The Economics of Social Data

Dirk Bergemann1 Alessandro Bonatti2 Tan Gan1

1Yale University
2MIT Sloan

Privacy Workshop
Princeton University
February 2020
Information and Data

- rise of large internet platforms, Amazon, Facebook, Google, and JD, Tencent, Alibaba, leads to unprecedented collection of individual user data
- information markets central to economic activity, $20b to acquire/process consumer data (IAB 2018)
- selling information → providing access to data
- consumer scores, predictions, ratings, recommendations, customized products and services
Individual and Social Data

- Individual-level data allows companies to refine search results, personalize product recommendations, informative ratings, timely traffic data, targeted advertising.
- Central feature of individual data is its social aspect.
- Data captured from an individual user is informative about users similar to the individual, thus it is social data!
- Social nature of data generates data externality.
Objectives and Challenges

consumer data must be acquired, aggregated, packaged, and sold.

- who buys consumers’ information in equilibrium? does the market enable an efficient use of individual information?

“social” dimension of the data: data about an individual consumer is informative about similar consumers.

- how does the social dimension of the data impact the terms of trade between consumers, data buyers, and data intermediaries?
- what determines the value of individual and aggregate data for an information intermediary?
Basic Model

- a data broker, N consumers, and a producer (merchant)
- each consumer has willingness-to-pay $w_i = \theta + \theta_i$
- common and idiosyncratic demand shocks, θ and θ_i:
 \[
 \begin{pmatrix}
 \theta \\
 \theta_i
 \end{pmatrix}
 \sim N
 \begin{pmatrix}
 \left(\begin{array}{c}
 \mu \\
 0
 \end{array} \right), & \left(\begin{array}{cc}
 \sigma^2_{\theta} & 0 \\
 0 & \sigma^2_{\theta_i}
 \end{array} \right)
 \end{pmatrix}
 \]
- and consumer i chooses quantity q_i
 \[
 u(w_i, q_i) = w_i q_i - \frac{1}{2} q_i^2 - p_i q_i
 \]
- producer maximize revenues $p = (p_1, ..., p_N)$
 \[
 \pi(p) = \mathbb{E} \sum_i (p_i - c) q_i.
 \]
Data Trade

- data broker buys data from individuals and sells to producer
- bilateral contracting
- data broker collects linear differentially private signal of w_i

$$s_i = \sum_j \alpha_{ij} (w_j + \varepsilon + \varepsilon_j) a_j,$$

with common and idiosyncratic shock, ε and ε_j weight $\alpha_{ij} \in \mathbb{R}$ prescribes influence data of j has on $\mathbb{E} [w_i | s_i]$

matched: $\alpha_{ij} = \mathbb{I}_{i=j}$; anonymized: $\alpha_{ij} = 1/N$

and $a_j \in \{0, 1\}$ identifies participation of consumer j

$$a_j \in \{0, 1\}$$
Timing

1. Data broker offers *ex ante* payment to consumer for data (signals can be *anonymized* or *matched*.)

2. Data broker sells ex-ante data to merchant

3. Data broker transmits data from consumers to merchant

4. Merchant charges uniform unit price p, or personalized price p_i; consumer i buys q_i
Model of Data Intermediation

- **Consumers**
- **Firms**
- **Data Intermediaries**

Flows:
- Services
- Information
- Payment
- Product
Application: Google Search (Indirect Sale)
Application: Supply Chain of Data

- Apps
- Information
- Service
- Payment
- Product
- Facebook
- Information
- Payment
- Firms
suppose demand information w_i were known to merchant

offers a personalized pricing policy against demand

$$ q_i^* = w_i - p_i^* $$

personalized price:

$$ p_i^* = \frac{w_i + c}{2} $$

realized demand:

$$ q_i^* = \frac{w_i - c}{2} $$

general feature: value of match vs surplus extraction
Data and Welfare

- ex ante expected price (quantity) unaffected by information
- welfare driven by variance/covariance of surplus:

\[
\Delta CS_i \triangleq CS_i(w_i, w_{-i}) - CS_i(\emptyset, \emptyset) = -\text{cov}[w_i, p_i] + \frac{1}{2} \text{var}[p_i]
\]

\[
\Delta PS_i \triangleq PS_i(w_i, w_{-i}) - PS_i(\emptyset, \emptyset) = \text{cov}[w_i, p_i] - \text{var}[p_i]
\]

- therefore information reduces total surplus:

Proposition

Demand data increases profit of producer, decreases consumer surplus and social surplus.

- socially inefficient to trade data in downstream market
Value of Social Data

- data point s_i increases variance of individual estimate

$$\mathbb{E}[w_i | s_i]$$

- data point s_i increases variance of aggregate estimate

$$\mathbb{E}\left[\sum_j w_j | s_i \right]$$

- social nature of data: data externality (DE_i):

$$DE_i = (CS_i(\emptyset, s_i) - CS_i(\emptyset, \emptyset))$$
Data Trade and Compensation

- since $\Delta CS_i < 0$, consumer i must be compensated for revealing signal s_i
- externality from information sale:
 - \implies if sale of s_i is harmful to consumer i, i is compensated;
 - \implies if sale of s_i helps predict $w_{j \neq i}$, i is not compensated;
 - \implies if sale of s_i is harmful to consumer $j \neq i$, j is not compensated
Data Intermediation: Aggregation

- should the broker collect anonymized data
- recall broker profits

\[\Pi_i = \Delta T S_i + D E_i \]

- suppose broker collects identities, considee data externality \(D E_i \)
- if \(i \) doesn’t participate, \(p_i \) depends on average signal \(\bar{s}_{-i} \)
- unaffected by anonymous data, but less information transmitted
- therefore, the loss in \(T S_i \) is smaller

Proposition (Anonymized Data)

With ex ante homogeneous consumers, the data broker collects anonymized data iff information reduces social welfare.

- reduces consumer compensation relative to value of information
Proposition (Optimal Data Intermediation)

1. There exists a threshold N such that positive profits iff the number of consumers is $N > N$.
2. Broker’s profit is increasing in σ^2_θ and decreasing in $\sigma^2_{\theta_i}$.
3. Data broker never adds idiosyncratic noise: $\sigma^2_{\varepsilon_i} = 0$.
4. Optimal aggregate noise $\sigma^2_\varepsilon > 0$ for large $\sigma^2_{\theta_i}$ or small N.

- if consumers’ preferences are not sufficiently correlated, broker does not trade any information
- information is traded even if it decreases social surplus
- common noise makes signals (s_i, s_j) less informative but more correlated
- correlation reduces compensation relative to value of information
First Implications

- data intermediation vs data in the wild
- uniform price rather than personalized price
- noisy transmission rather than noiseless transmission
- partial compensation of consumer: for individual harm, but not for social harm
- yet, far from socially efficient allocation
More Users

- as number of consumers N becomes large, individual information becomes less valuable
- let $m_i :=$ individual consumer compensation
- let $m_0 :=$ broker revenue from merchant
Growing Revenue

Proposition (Consumer Base)

1. \(m_0(N)/N \) is growing in \(N \);
2. As \(N \to \infty \), \(m_0 \) grows linearly in \(N \).
3. As \(N \to \infty \), \(m_i \to 0 \), \(N \times m_i \to k < \infty \).

- explains frequent absence of consumer compensation for individual data
- cost of compensation decreases with size of consumer base
More Services / More Data

- facebook connect: login tracks consumer across web, Instagram, Snapchat, Facebook Groups...
- gmail (identity), google maps, youtube...
- each source of information has idiosyncratic noise:

\[s_{i,j} = t_i + \varepsilon_{i,j} \]

- let \(x \) = number of services offered to consumer \(i \)
- reducing idiosyncratic noise has a direct effect: increases the value of information
- indirect effect: lower consumer compensation as signals are more correlated

Proposition (More Data)

1. the constrained optimal amount of common noise \(\sigma^*_\varepsilon(x) \) is decreasing in \(x \);
2. the broker’s profit is convex in \(x \).
Concluding Thoughts

- cost of acquiring information vanishes; gains persist as markets grow large
- additional users or data sources increase broker revenue more than linearly
- value of information to intermediary \(\neq \) total surplus generated with competition:
 - limited scope for increase in privacy
 - implications for market structure in data intermediation sector.