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Two hypotheses

1. Covid-19 is seasonal
Strong wave in the fall, weak (or no) wave in the spring
Historical and current evidence

2. Seasonality is driven by UV
Physical and empirical case for UV
UV strong relative to other factors
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Historical vs current patterns



Data from all corona tests in seven hospitals in Stockholm area in 2010-2019
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New Covid-19 cases, 14 day sum of new Covid-19 cases per 100 000 persons March 1 — 20, October 2020
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New Covid-19 cases, 14 day sum of new Covid-19 cases per 100 000 persons 1 March 2020 — 20 October 2020
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The case for UV



UV load (left scale) and new Covid-19 cases (right scale) in France, March 1 — 17 October 2020
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New Covid-19 cases in France and South Africa March 1 — 20, October 2020
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UV load in South Africa and France August 2019 — October 2020
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New Covid-19 cases in France, South Africa and Australia March 1 — 20 October, 2020
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Mobility and Stringency



New Covid-19 cases in Finland, Germany, France and Sweden March 1 — October 20, 2020
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Mobility (Retail & Recreation, left scale) and new Covid-19 cases (right scale) 1 March 2020 — 20 October 2020
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Policy stringency (left scale) and new Covid-19 cases 1 March 2020 — 20 October 2020 (right scale) in France
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Policy stringency (left scale) and new Covid-19 cases 1 March 2020 — 20 October 2020 (right scale)
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Regression



Model for new Covid-19 cases

Low immunity = exponential case growth UV drives seasonality Policy to control Covid-19

Mobility

v

logC = n + ut + 8logUV + wlogP + plogM

C=14 day sum of new Covid-19 cases/100 000 persons (ECDC data)

t=time trend

UV=14 day sum of UV radiation load (country satellite data)

P=Policy stringency index, relative to pre-Covid time (Oxford University data)

F=Mobility, % deviation from pre-Covid-19 time at the start of 2020 (Google and Apple data)

20



New Covid-19 cases equation with a lag structure and alternative additional explanatory variables

France
Dependent Variable: AlogC
Model

Coefficient  t-Statistic
Constant 0,73290 13,16731
Trend 0,00060 7,42048
logC 1 day lag -0,04520 -8,48418
logUV 3 week lag -0,16623 -12,38027
logUV difference 3 week -0,03428 -1,62681
logUV deviation of long run level
logStringency 3 week lag
logTransit mobility 3 week lag
R-squared 0,48612
F-statistic 49,89979
Durbin-Watson stat 1,90173
LM(2) # 3,78586
LM / Prob. Chi-Square(2) # 0,15060
# Breusch-Godfrey Serial Correlation LM Test.
Sample: 3/04/2020 10/05/2020
Included observations: 216
Long-run elsticity of new Covid-19 cases;
Underlying growth rate, % / day 1,32
Elasticity w.r.t. UV -3,68

Median lag from UV 35,98

Coefficient

0,73488
0,00053
-0,04710
-0,16160
-0,06423
-0,17247

0,50119
42,19993
1,96275
1,99549
0,36870

1,12
-3,43
35,37

t-Statistic

13,36776
6,29270
-8,86134
-12,07227
-2,67979
-2,51886

Coefficient

0,55801
0,00029
-0,02976
-0,09581
-0,01857
-0,06775

-0,06619

0,51937
37,64158
2,06519
1,34634
0,51010

0,97
-3,22
43,94

t-Statistic

6,72658
2,46754
-3,68060
-3,56828
-0,64872
-0,88015

-2,81220

Coefficient

0,58905

0,00037
-0,04080
-0,13354
-0,05720
-0,11616

0,01883

0,50668
35,77611
1,99389
1,81105
0,40430

0,89
-3,27
37,64

t-Statistic

5,34432
2,70039
-6,07018
-5,87462
-2,35071
-1,49679

1,52490



Long-run elasticity of new Covid-19 cases w.r.t. UV
New Covid-19 cases equation with alternative additional explanatory variables

Model 1 Model 2 Model 3
= Model 1 + policy = Model 1 + mobility

3,43 -3,22 -3,27

France

3,13 -2,60 -2,84

Germany

Finland -2,99 -2,74 -3,77



Mobility data (Retail and recreation) in Sweden and Finland
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"Natural experiment” - Sweden versus Finland

Differences in transit mobility deviations from pre-Covid-19 time and in new Covid-19 cases between Sweden and Finland
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Qualifications



Conclusions still tentative - but risks are high

* UV effects may come through other factors (behavioral patterns)

* Endogeneity and collinearity problems (possible instrument: UV
affected by altitude — but also infections)

* We haven’t seen full cycle yet (US may still fall in line)

* Increase in testing affects case count and positivity rate



Test Done (left scale) and new Covid-19 cases (right scale) in France, March 1 — 20 October 2020
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Positivity Rate (left scale) and new Covid-19 cases (right scale) in France, March 1 — 20 October 2020
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Conclusions



Main takeaways

* Asymmetric waves:

* Virus has tail-winds in the fall — the next months may be very severe

* Virus has head-winds in the spring — we’ll get a rest over the summer
e Seasonality important for:

* Proactive policy

* Correct modeling



THANKS!
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Annexes

Annex A: A simple model of Covid-19
Annex B: Data
Annex C: Possible reasons for large effects of mobility and UV on spread of Covid-19

Annex D: Challenges in modelling Covid-19
Annex E: Estimation results with robustness analysis



Annex A: A simple model of Covid-19

Assumption 1: New Covid-19 cases per capita (or per 100 000), C, depend positively on the initial exponential growth rate of the epidemic, u, and
negatively on UV radiation load, UV, policy, P, and behavioral (fear), F, variables and population Covid-19 immunity rate, I.
+ - - - -

(1) c=fly, uv, p, £ 1)
where c=logC, uv=logUV, p=logP, f=logF.
Annex C reports evidence that population Covid-19 immunity rate has stayed so low (e.g. 0.3 % in Finland) that /=0 is a reasonable approximation.

Assumption 2: Covid-19 deaths per capita depend positively on C and negatively on UV, P and F.
+ - - -

(2) d=g(c, uv, p, f), where d=logD.
Assumption 3: Control and behavioral variables do not have statistically significant additional explanatory power in equations (1) and (2).

Assumption 3 was not made a priori, but empirical results provided partial support for it. This does not mean that, say, mobility does not affect
spread of Covid-19. Rather, it indicates that it difficult to infer the effect of mobility on Covid-19 from equations (1) and (2). An apparent
interpretation to this finding is that p and UV explain, via their effects on Covid-19 cases and deaths, also the policy and behavioral reactions. This
leads to the following empirically testable assumption.

Assumption 4: The responses of control and behavioral variables, M, to Covid-19 cases and deaths are determined by u and UV so that one can write
-+ -+

(3) p=p(, uv), f=h(y, uv).



Substituting first (3) into (1), and taking into account that /=0 in (1), and substituting ¢ from this into (2), onr can write
+ -
(4) d=j(u, uv).

The model leads into a testable hypothesis that the deviation of the economy from its pre Covid-19 path is determined, other things being equal,
by 1 and UV, which are exogeneous and reliably forecastable variables where [ is, in fact, a constant as long as /=0.

Relaxing assumption 4 that responses of control and behavioral variables to cases and deaths are determined by p and UV, one can write

(5) c=k(u, uv, p, f).

(6) d=I(u, uv, p, f).

Assuming that P and F can be measured jointly with mobility M, and denoting m=logM, one can write

(7) c=k(u, uv, m).

(8) d=I(u, uv, m).

(7) and (8) are used to estimate the empirical country difference equation in the presentation. Note that assuming the same underlying growth

rates W in two countries, A and B, conditional on UV and its causes in terms of policy and behavior reactions, p cancels out in the difference
Equations. One can then write the equations for Covid-19 cases and deaths as (9) and (10), which are used to estimate Sweden-Finland equations.

(9) ) (c* -c®)=m{(m*-mP), (uvA-uv®)}

(10) (d* -dB)=n{(m”-m&),(uvA-uve)}.



Annex B: Data

This annex lists the data sources and it provides graphs of the variables used in estimation. From the graphs on Covid-19 deaths, it is apparent
that there are irregularities in that data in the case of Spain. Assuming that these irregularities are to due to reporting lags and corrections
made afterwards but that the total cumulative number of deaths is measured correctly, a mechanical smoothing was applied by, in case of a
negative death observation that negative obsevation was evenly distributed to 30 previous days and similar smoothing was applied for a very
large positive observations. For Italy’s Covid-19 cases equation, 14 days moving averages, instead of 14 days cumulative numbers, wew used.

Data source: Covid-19 cases and deaths
All the data on Covid-19 cases and deaths used in the empirical analysis are from European Centre for Disease Prevention and Control (ECDC).
https://www.ecdc.europa.eu/en/publications-data/download-todays-data-geographic-distribution-covid-19-cases-worldwide

Data sources: UV load

The UV load is measured as Erythemal Daily Dose (J/m”2) or EDDose

The UV data used in the estimation was obtained from following national data sources:

Finland: https://avdc.gsfc.nasa.gov/pub/data/satellite/Aura/OMI/V03/L20VP/OMUVB/aura_omi |2ovp omuvb v03 helsinki.kumpula.txt

Sweden https://avdc.gsfc.nasa.gov/pub/data/satellite/Aura/OMI/V03/L20VP/OMUVB/aura omi 12ovp omuvb v03 norrkoeping.txt

https://avdc.gsfc.nasa.gov/pub/data/satellite/Aura/OMI/V03/L20VP/OMUVB/aura omi 12ovp omuvb v03 vindeln.txt
Germany https://avdc.gsfc.nasa.gov/pub/data/satellite/Aura/OMI/V03/L20VP/OMUVB/aura omi 12ovp omuvb v03 offenbach.txt
France https://avdc.gsfc.nasa.gov/pub/data/satellite/Aura/OMI/V03/L20VP/OMUVB/aura omi [2ovp omuvb v03 palaiseau.txt
Italy https://avdc.gsfc.nasa.gov/pub/data/satellite/Aura/OMI/V03/L20VP/OMUVB/aura_omi 12ovp omuvb v03 ispra.txt
Spain https://avdc.gsfc.nasa.gov/pub/data/satellite/Aura/OMI/V03/L20VP/OMUVB/aura_omi 12ovp omuvb v03 el.arenosillo.txt
The authors thank experts at the Finnish Meteorological Institute for advise and help with sattellite data.

Data source: Mask wearing (This data was not used to estimate the equations of Annex B. Next slide shows the limited variability in that data.)
COVID-19 resources. Institute for Health Metrics and Evaluation. University of Washington, USA. http://www.healthdata.org/covid
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https://www.ecdc.europa.eu/en/publications-data/download-todays-data-geographic-distribution-covid-19-cases-worldwide
https://avdc.gsfc.nasa.gov/pub/data/satellite/Aura/OMI/V03/L2OVP/OMUVB/aura_omi_l2ovp_omuvb_v03_helsinki.kumpula.txt
https://avdc.gsfc.nasa.gov/pub/data/satellite/Aura/OMI/V03/L2OVP/OMUVB/aura_omi_l2ovp_omuvb_v03_norrkoeping.txt
https://avdc.gsfc.nasa.gov/pub/data/satellite/Aura/OMI/V03/L2OVP/OMUVB/aura_omi_l2ovp_omuvb_v03_vindeln.txt
https://avdc.gsfc.nasa.gov/pub/data/satellite/Aura/OMI/V03/L2OVP/OMUVB/aura_omi_l2ovp_omuvb_v03_offenbach.txt
https://avdc.gsfc.nasa.gov/pub/data/satellite/Aura/OMI/V03/L2OVP/OMUVB/aura_omi_l2ovp_omuvb_v03_palaiseau.txt
https://avdc.gsfc.nasa.gov/pub/data/satellite/Aura/OMI/V03/L2OVP/OMUVB/aura_omi_l2ovp_omuvb_v03_ispra.txt
https://avdc.gsfc.nasa.gov/pub/data/satellite/Aura/OMI/V03/L2OVP/OMUVB/aura_omi_l2ovp_omuvb_v03_el.arenosillo.txt
https://covid19.healthdata.org/germany?view=resource-use&tab=trend&resource=all_resources

Variables used in Covid-19 cases and deaths equations

Definitions of variables used in estimating the regression equations:

logC=log(14 days cumulative number of Covid-19 cases/100 000 persons)

logD= log(14 days cumulative number of Covid-19 deaths/100 000 persons)

logUV14=log(14 days cumulative sum of UV radiation load).

logUV28S and logUV35S are the corresponding 28 and 35 days sums, respectively.

logWork mobility=log(14 days moving average of Google work-related mobility variable).

This and other publicly available Google mobility variables are perecentage differences from the beginnig of year reference period.
Hence, if, e.g., mobility was 75 % below the reference period level, the variable would have a value of -75. In this case, the
corresponding variable would be reported as 25, i.e. the per cent level from reference period.

In the empirical application, the Google variables were used in a similar way as the Apple variables are reported.

This obtained by adding 100 to reported Google mobility variables.

logRec. mobility Google=log(14 days moving average of Google recreation-related mobility variable).

logTransit mobility Apple=log(14 days moving average of Apple transit mobility variable).

logStringency=log(policy stringency index, relative to pre-Covid time) (Oxford University data)

T=Time trend.



UV radiation estimated by satellites

Background

* Local private Davis Enviromonitor weather station in Palojoki Finland https://www.davisinstruments.com/enviromonitor/

*  Dutch-Finnish built Ozone Monitoring Instrument (OMI) on-board Nasa’s EOS-Aura satellite was launched in 2004. It provides global and nearly
daily UV radiation estimates. UV radiation products are developed by the Finnish Meteorological Institute.

Satellite UV algorithm

* The UV radiation that reaches the Earth surface depends on atmospheric ozone, aerosols, clouds and surface reflection. Satellite measures

ozone and clouds in the atmosphere. The UV radiation is estimated using radiative transfer modeling and climatology for aerosols and surface
reflection.

* Global data are available via https://avdc.gsfc.nasa.gov/pub/data/satellite/Aura/OMI/V03/L20VP/OMUVB/

.
Radiative
Cloud transf_er
information modeling
Surface A
reflection / t
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https://avdc.gsfc.nasa.gov/pub/data/satellite/Aura/OMI/V03/L2OVP/OMUVB/
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Annex C: Possible reasons for large effects of mobility and UV on the spread of Covid-19

This annex provides short explanations of possible reasons why mobility and UV may have large effects on spread of Covid-19.

Why leisure & work mobility may have large effects on spread of Covid? How less contacts reduce spread of Covid-19? b

The basic reproduction number RO=By, where B=average infection-
producing contacts per unit time and y=mean infectios period. Assume:
- Leisure- and work-related mobility involve contacts with other people. behaviour '

- Under normal conditions R0=2.5, i.e. one infected infects 2.5 others.

- An infected person infects for 5 days while she is asymptomatic. 1
. . . Person eeecc<p 2.5 people ==--<p 406 people
- After 5 days she gets symptoms, quarantines and stops infecting others. infects
- Reduce RO by 50% (R0=1.25) or by 75% (R0=0.625).
Consider one infected person. The total number of people that would 50% less
become infected in 30 days = 1 + RO* + RO? + RO® + RO* + RO® + R0°, i.e. contact

1
Person esececep 1.25 people <<<<-<p 15 people

6
Infected people at 30 days = Z RO™ infects

75% less
n=0 contact
One caveat is that when RO<1, the number of cases will actually decline 1
over time and eventually go to zero. This is because an infected person Person ee=<<<p 0.625 people =----p 2.5 people
cannot infect 0.625 people, it is either zero, one or more. When it is zero, infects
transmission chain ends. Exact calculation of the 75% reduction thus Source: Statista

requires more complex probability calculations.

The text and graph are based on “Coronavirus Calculations & Infographic”

by Robert A.J. Signer, Ph.D., Assistant Professor of Medicine, University of
California San Diego. https://robertsigner.wordpress.com/coronavirus/



https://robertsigner.wordpress.com/coronavirus/

Why UV radiation may have large effects on spread of Covid-19?

- In, e.g., Europe and the US, annual corona virus and influenza cycles are closely aligned with the strong UV cycle (following four slides).

Ultraviolet light is usually divided into three groups by radiation wavelengths:

1. Ultraviolet A or UVA that has wavelength of 320-400 nanometers (nm). UVA from sun reaches earth’s surface.

2. Ultraviolet B or UVB that has wavelength of 280-320 nm

3. Ultraviolet C or UVC that has wavelength of 200-280 nm. UVC from sun does not reach, or reaches to a limited extent, earth’s surface.

UVC’s germicidal effectiveness peak wavelength is 260-265 nm, which is equivalent to the peak of ultraviolet radiation absorption of nucleic acids.

Since UVA radiation is insufficiently absorbed by viral nucleic acid, UVA is not considered germicidal. However, in a recent article, Rezaie et al (2020)*

report results that UVA effectively reduces bacteria and viruses including coronavirus. Rezaie et al (2020) note that:

“Our study has several limitations. While multiple daily short-term UVA treatments did not harm human cells and appeared safe in vivo, longer term
use may require further study. We assessed UVA against several microbes, but more studies are needed to address additional pathogens, including
multi-drug resistant organisms, mycobacteria, and archaea. We did not evaluate UVA against SARS-CoV-2 specifically. However, given the efficacy of
UVA against coxsackievirus and CoV-229 (both positive sense, single-stranded RNA viruses), SARS-CoV-2 is likely also UVA-sensitive.”

In a recent article, Ratnesar-Shumate et al (2020)** find that simulated sunlight rapidly inactivates SARS-CoV-2 on surfaces. They note that:

- “Simulated sunlight rapidly inactivated SARS-CoV-2 suspended in either simulated saliva or culture media and driedon stainless steel coupons.
Ninety percent of infectious virus was inactivated every 6.8 minutes in simulated saliva and every 14.3 minutes in culture media when exposed to
simulated sunlight representative of the summer solstice at 40°N latitude at sea level on a clear day. Significant inactivation also occurred, albeit at
a slower rate, under lower simulated sunlight levels. The present study provides the first evidence that sunlight may rapidly inactivate SARS-CoV-2
on surfaces, suggesting that persistence, and subsequently exposure risk, may vary significantly between indoor and outdoor environments.”

Merrow and Urban (2020)*** note also the possible immune resistance enhacing effect of UV:

- "Ultraviolet (UV) light effectively inactivates many viruses (19), especially larger coronaviruses (24) like SARS-CoV-1 (25). Sunny days might decrease
outdoor transmission or promote immune resistance via vitamin D production (26).”

*Rezaie A, Leite GGS, Melmed GY, Mathur R, Villanueva-Millan MJ, Parodi G, et al. (2020) Ultraviolet A light effectively reduces bacteria and viruses including coronavirus.
PLoS ONE 15(7): e0236199. https://doi.org/10.1371/journal.pone.0236199 https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0236199

**Ratnesar-Shumate et al (18 other authors) (2020), Simulated sunlight rapidly inactivates SARS-CoV-2 on surfaces. The Journal of Infectious Diseases, Volume 222, Issue 2,
15 July 2020, Pages 214-222, https://doi.org/10.1093/infdis/jiaa274 https://academic.oup.com/jid/article/222/2/214/5841129

***Merow Cory and Mark C. Urban (2020), Seasonality and uncertainty in global COVID-19 growth rates. PNAS, 2020 October,1-9. https://doi.org/10.1073/pnas.2008590117
https://www.pnas.org/content/early/2020/10/14/2008590117



https://www.pnas.org/content/early/2020/10/14/2008590117#ref-19
https://www.pnas.org/content/early/2020/10/14/2008590117#ref-24
https://www.pnas.org/content/early/2020/10/14/2008590117#ref-25
https://www.pnas.org/content/early/2020/10/14/2008590117#ref-26
https://doi.org/10.1371/journal.pone.0236199
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0236199
https://doi.org/10.1093/infdis/jiaa274
https://academic.oup.com/jid/article/222/2/214/5841129
https://doi.org/10.1073/pnas.2008590117
https://www.pnas.org/content/early/2020/10/14/2008590117

Daily sattellite data of UV load, 14 day moving average
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Latest value for: 10/15/2020, 10/15/2020, 10/15/2020, 10/15/2020, 10/15/2020, 10/15/2020. Source: NASA, Goddard Space Flight Center.



Influenza-like illness (ILI) by WHO Influenza virus activity peaks at similar times at
similar latitude, e.g. during winter and early spring in the northern hemisphere.

Heat maps of global monthly activity of seasonal coronaviruses (sCoVs), influenza virus
(IFV), and respiratory syncytial virus (RSV). Each square indicates share of virus cases are

observed in a month. AAP=annual average % as the strength of virus.
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Next slide shows the seasonality of positive corona test results in the four census regions
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Source: Tang et al (2020)

https://www.sciencedirect.com/science/article/pii/S0048969720353456
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Annex D: Challenges in modelling Covid-19

Empirical modelling of Covid-19 includes following challenges:

- The epidemic is still at a relatively early stage. In Europe, the epidemic started more generally in March 2020.

There seems to be already a strong seasonal component because the epidemic slowed abruptly in Spring.

That slowdown, in spite of simultaneous easing of control measures and low immunity rate, supports strong seasonality.

In practice, all control and behavioral variables, to explain Covid-19 cases or deaths, are endogenous to those variables.
Moreover, instrumental variable estimation is hard when potential instruments seem to be endogenous to cases or deaths.
In earlier research, following solutions have been applied due to lack of data and other difficulties:

- Neher et al (2020) and Kissler et al (2020) have applied seasonal forcing. https://smw.ch/article/doi/smw.2020.20224

- https://science.sciencemag.org/content/early/2020/04/14/science.abb5793.full

- Many studies use time varying and multiple parameter functional forms to fit models to Covid-19 data.

The drawbacks of these approaches include the following:

- Covid-19 seasonality remains a black box.

- When the drivers of seasonality are unknown, it is difficult to infer the true parameters of other drivers of Covid-19 epidemic.
- With time varying and increasing number of parameters, the models become less informative.

- These models may still be of use in forecasting, but they may not help one to understand the epidemic.

To overcome these drawbacks, this presentation:

- Uses previous research on corona and influenza seasonality to model seasonality explicitly.

- Takes into account that the Covid-19 epidemic does not seem to follow, say, a SIR-model given the very low immunity rate.
- Aims, based on previous research, at a as simple and parsimonious model as possible.

- Puts forward an empirically easily refutable hypothesis about the drivers of Covid-19.

Epidemiologist Marc Lipsitch™: “..at least three things that are affecting the growth rate or decline rate of the epidemic.”

1. ”The firstis control measures...”. “...control measures are not just what the government says to do, but what people actually do...”
2.  “The second is seasonal variation in terms of the suitability of environmental conditions for transmission.

3. “..the third is population level immunity.”

https://www.hsph.harvard.edu/news/features/coronavirus-covid-19-press-conference-with-marc-lipsitch-08-13-20/



https://smw.ch/article/doi/smw.2020.20224
https://science.sciencemag.org/content/early/2020/04/14/science.abb5793.full
https://www.hsph.harvard.edu/news/features/coronavirus-covid-19-press-conference-with-marc-lipsitch-08-13-20/
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Weekly report of serological population study of Covid-19 in Finland based on random samples

Tested |Positive

Sample week

. 020-W17 674
. 020-W18 426

’.

2020-W27 85
2 020-W28 51

2020-W37 17
Allweeks I

Share of
positives

Tested samples: Number of samples which have arrived at THL and for which an antibody test has been performed until the reporting
day. Samples with positive antibodies: Number of tested samples with positive antibodies Samples which belong to an MNT test set:
Number of samples which have been possible to consider in a microneutralisation test (MNT). The number of MNT positives should be
compared to this number. MNT tested samples: Number of samples with positive antibody results for which a microneutralisation test
was performed until the reporting date. MNT positive samples: Number of microneutralisation tested samples with a positive result.
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Share with positive

2.49% (1.31-4.66)

2.52% (1.58-4)
2.82% (1.62—4.86)
1.56% (0.79-3.04)
1% (0.39-2.54)
4.29% (2.27-7.94)
2.81% (1.21-6.41)
3.74% (1.91-7.2)
2.87% (1.23-6.55)
0% (0—4.69)

0% (0-10.72)
5.88% (2.54-13.04)
0% (0-7)

0% (0-35.43)
11.11% (1.99-43.5)
2.67% (0.73-9.21)
4.08% (1.13-13.71)
1.56% (0.28-8.33)
7.94% (3.44-17.27)
4.17% (1.15-13.98)
1.67% (0.29-8.86)
0% (0-18.43)

Samples which
belong to an
NT test set

362
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426
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0.28% (0.05-1.55)
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0.47% (0.13-1.7)
0% (0-0.74)
0.25% (0.04—1.4)
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0% (0-2.11)
0.47% (0.08-2.6)
0% (0-2.16)

0% (0—4.69)
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0% (0—4.32)

0% (0-7)
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1.33% (0.24-7.17)
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2.08% (0.37-10.9)
0% (0-6.02)

0% (0-18.43)

Source: THL https://www.thl.fi/roko/cov-vaestoserologia/sero report weekly en.html

The Finnish Institute for Health and Welfare (THL)

publishes regular results on a serological population study on
its website. The main purpose of the study is to obtain up-to-
date information on how large a proportion of the population
among different age groups and regions have developed
antibodies to coronavirus (seroprevalence).

The study is based on random sampling. The presence of
antibodies is studied using two different tests developed at
THL. First, a sensitive test is used to measure whether the
sample contains antibodies identifying coronavirus SARS-CoV-
2. Positive results are then verified with a microneutralisation
test that measures the ability of antibodies to neutralise the
virus, which provides a very reliable indication whether the
sample contains antibodies that have formed specifically for
the new coronavirus. Neutralizing antibodies can be
considered the most reliable method to detect coronavirus
infection, but only a few microneutralization (MNT) positive
results have been observed.

Results reported by several countries on the proportion of
antibody-positive samples (seroprevalence) vary greatly and
are mostly based on the results of individual antibody tests
where neutralizing antibodies have not been measured. There
are differences between study samples and the performance
of the tests used. Even with an accurate antibody test, the risk
of false positives is significant when the actual number of
infections in the population is low.

So far, samples have only been collected from people aged 18
to 69. Approximately 750 subjects are invited to participate in
the study each week, but participation is spread across
several calendar weeks. So far, around 60% of those invited
have participated in the study. _ 50


https://thl.fi/en/web/thlfi-en/research-and-expertwork/projects-and-programmes/serological-population-study-of-the-coronavirus-epidemic
https://www.thl.fi/roko/cov-vaestoserologia/sero_report_weekly_en.html

Low population Covid-19 immunity

Epidemiological models assume typically that infections result in permanent or long lasting immunity. To take into account the
decreasing effect of the increasing population immunity, typically a logistic model is fitted to explain the evolution of the
epidemic. However, serological studies on Covid-19 suggest that seroprevalence has stayed low. For example, Stringhini et al
(2020)* note (see also next slide):

“At what appears to be the tail end of the first wave of the pandemic in Switzerland, about one in ten people have developed
detectable antibodies against SARS-CoV-2, despite the fact that it was one of the more heavily affected areas in Europe. Thus,
assuming that the presence of the IgG antibodies measured in this study is, at least in the short term, associated with
protection, these results highlight that the vast majority of the population is still immunologically naive to this new virus.”

The seroprevalence figures for France, Germany, Italy, Spain and Finland are even lower than in Switzerland. On July 13, the
German authorities reported on a study that showed that only 1.3 % had antibodies in blood sample of 12 000 persons.
https://www.reuters.com/article/us-health-coronavirus-germany-immunity-idUSKCN24E0X7 Also in the other four countries, low levels of
antibodies have been detected. The results from a weekly random sample in Finland are presented in the previous slide. The
possible explanations for the very low Covid-19 immunity rate in populations include that a) not all infected persons create
antibodies and b) antibodies decrease relatively rapidly. According to recent study by Edridge et al (2020)**:

“Caution should be taken when relying on policies that require long-term immunity, such as vaccination or natural infection to
reach herd immunity. Other studies have shown that neutralizing SARS-CoV-2 antibody levels decrease within the first 2 months
after infection, especially after mild COVID-19%¢, and we observed a similar decrease in anti-nucleocapsid antibodies of
seasonal coronaviruses...” An exponential model is warranted as long as seroprevalence for Covid-19 continues to be very low.

*Stringhini, S. et al (2020), Seroprevalence of anti-SARS-CoV-2 IgG antibodies in Geneva, Switzerland (SEROCoV-POP): a population-
based study. The Lancet Volume 396 Issue 10247 Pages 313-319 (August 2020). DOI: 10.1016/50140-6736(20)31304-0
https://www.thelancet.com/journals/lancet/article/Pl1IS0140-67362031304-0/fulltext

**Edridge, A.W.D., Kaczorowska, J., Hoste, A.C.R. et al. (2020), Seasonal coronavirus protective immunity is short-lasting.
Nature Medicine (2020). https://doi.org/10.1038/s41591-020-1083-1 https://www.nature.com/articles/s41591-020-1083-1#citeas
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Empirical finding: higher altitude reduces Covid-19 growth rate (two recent studies)

Arias-Reyes et al (2020a)

- ”..we analyze the epidemiologic data of COVID-19 of Tibet and high-altitude regions of Bolivia and Ecuador, and compare to lowland data, to test the
hypothesis that high-altitude inhabitants (+2500 m above sea-level) are less susceptible to develop severe adverse effect in acute SARS-CoV-2 virus
infection. ...Our epidemiological analysis of the Covid-19 pandemic clearly indicates a decrease of prevalence and impact of SARS-CoV-2 infection in
populations living at altitude of above 3,000 masl. ... Although the data of the present study suggest a strongly decreased pathogenicity of SARS-CoV-

2 in high-altitude, there is yet no evidence of an underlying physiological mechanisms that could affect to severity of infection.”
https://www.researchgate.net/publication/340793665 Does the pathogenesis of SARS-CoV-2 virus decrease at high-altitude

Arias-Reyes et al (2020b):

- “We have suggested previously that the infection rate of this virus might be lower in people living at high altitude (over 2,500 m) compared to that in
the lowlands. Based on data from official sources, we performed a new epidemiological analysis of the development of the pandemic in 23 countries
on the American continent as of May 23, 2020. Our results confirm our previous finding, further showing that the incidence of COVID-19 on the
American continent decreases significantly starting at 1,000 m above sea level (masl).”

- “Finally, evaluating the differences in the recovery percentage of patients, the death-to-case ratio, and the theoretical fraction of undiagnosed cases,
we found that the severity of COVID-19 is also decreased above 1,000 m. We conclude that the impact of the COVID-19 decreases significantly with
altitude.” https://www.medrxiv.org/content/10.1101/2020.07.22.20160168v2

An apparent explanation for the finding is the effect of altitude on UV radiation load. According to the WHO:

- “... at higher altitudes, a thinner atmosphere filters less UV radiation. With every 1000 metres increase in altitude, UV levels increase by 10% to 12%.”
https://www.who.int/uv/uv_and health/en/

Consider Mexico Cityn ja Havanna in Cuba. These cities are roughly in the same latitude. Havanna is 50 meters and Mexico City is 2268 meters above sea
level. During last 12 months, sum of daily UV radiation load has been 39 % higher in Mexico City compared to Havanna (see next slide).

52


https://www.researchgate.net/publication/340793665_Does_the_pathogenesis_of_SARS-CoV-2_virus_decrease_at_high-altitude
https://www.medrxiv.org/content/10.1101/2020.07.22.20160168v2
https://www.who.int/uv/uv_and_health/en/

Evidence on 23 countries in the American continent: higher altitude reduces Covid-19 cases and the death-to-case ratio (annex C). Apparent reason, WHO:
“... at higher altitudes, a thinner atmosphere filters less UV radiation. With every 1000 metres increase in altitude, UV levels increase by 10% to 12%.”

UVLoad Mexico City vs. Cuba Havanna (approximately same geographical latitude)

Mexico City (right scale) 11000
~10000

- 9000
Havanna (right scale)

. - 1000

10+

60 -

50;"’\'\

40 - ' - 6000
- 50
30- |
: = 4000
- - 30
September  October ~ November December  January ~ February ~ March April May June July August ~ September
2019 2020

((sum{UVMexicoCity, 28)/sum{UVCubaHavanna, 28))-1)*100, Ihs = sum(UVMexicoCity, 28), UVMexicoCity, rhs =sum(UVCubaHavanna, 28], UVCubaHavanna, ths

Latest value for: 9/27/2020, 9/27/2020, 9/27/2020. Source: 53



Annex E: Estimation results with robustness analysis

1. Robustness of Covid-19 model for France, Germany and Finland with respect to adding alternatively the
policy stringency index variable or one of the Apple or Google mobility variables

a) Using cases as dependent variable

b) Using deaths as dependent variable

2. Robustness od Sweden-Finland difference model with respect to adding alternatively the policy stringency
index variable or one of the Apple or Google mobility variables

a) Using cases as dependent variable

b) Using deaths as dependent variable



Estimation equation

Covid-19 cases are assumed to depend on an exponential growth rate and UV radiation load. A log-linear functional form is assumed. The long run
equation for Covid-19 cases is written as

(1) logC=n+ut+BlogUV+wlogP+ElogM,

where C=14 day sum of new Covid-19 cases per 100 000 persons, t=time trend, UV=load of UV radiation, P=policy stringency index, M=mobility variable
(either a work- or recreation-related mobility variable based on data provided publicly by Google or Apple).

In estimating the relation, a geometric lag distribution is assumed. Moreover, also initial lags from UV and M are allowed. If coefficients of P and M are
not statistically significant at 5 % level, they are left out and the estimation equation reduces to

(2) AlogC=a+(A-1)logC, ,+6t+BlogUV,_ +u,, where u, is an error term and AlogC,=logC,-logC, ;.

The parameters of (1) are obtained as pu=6/(1-A), 6=B/(1-A) and w=¢(1- A).n and p are the number of days due to, e.g., reporting lags. The median lag
from UV to C is obtained as m1=n+(log0.5/logA).

The long run relation of (1) exits only if A<1, i.e. only if the coefficient of logC, ; is significantly negative. Breusch-Godfrey test is used to test that residuals
do not deviate from white noise.

In estimating (2), differences in logUV where included as explanatory variables to reduce autocorrelation in the error term. In addition, UV deviation
from its 2005-2019 average was included to reduce autocorrelation. This variable may capture effects of an omitted variable. An omitted variable can be
the amount of UVC radiation. As the second slide in annex C notes, UVC’s germicidal effectiveness (virus destroying effectiveness) peak wavelength is
260-265 nm. Normally UVC from sun does not reach, or reaches to a limited extent, earth’s surface. When daily UV deviates from its long-term average,
possible causes for that include weather conditions (e.g. clouds) and thickness of the ozone layer. The thinner the ozone leyer is, the more UVC reaches
earth’s surface and vice versa. If, e.g., the ozone layer is unusually thin, or if it has a hole, UV’s germicidial effect is likely be unusually large.



France

Dependent Variable: AlogC

Coefficient t-Statistic
Constant 0,73290 13,16731
Trend 0,00060 7,42048
logC(-1) -0,04520 -8,48418
logUV(-21) -0,16623  -12,38027
A(21)logUV -0,03428 -1,62681
logUVdev.LRAv.(-22)7
logStringency(-21)
logTransit mobility(-21) Apple
logRecretion mob.(-21) Google
R-squared 0,48612
F-statistic 49,89979
Durbin-Watson stat 1,90173
LM(2)AA 3,78586
LM / Prob. Chi-Square(2)”» 0,15060
Sample (adjusted): 3/04/2020 10/05/2020
Included observation: 216

AlogC
Coefficient  t-Statistic
0,73488 13,36776
0,00053 6,29270
-0,04710 -8,86134
-0,16160 -12,07227
-0,06423 -2,67979
-0,17247 -2,51886
0,50119
42,19993
1,96275
1,99549
0,36870
3/04/2020 10/05/2020

216

AlogC
Coefficient
0,55801
0,00029
-0,02976
-0,09581
-0,01857
-0,06775

-0,06619

0,51937
37,64158
2,06519
1,34634
0,51010

t-Statistic

6,72658
2,46754
-3,68060
-3,56828
-0,64872
-0,88015

-2,81220

3/04/2020 10/05/2020

216

AlogUVdev.LRAVv. = log(42 day moving sum of UV) - log(42 day moving sum of the daily average of UV in 2005-2019).

ANBreusch-Godfrey Serial Correlation LM
Test.

Long-run elsticity of new Covid-19 cases

Underlying growth rate, % / day 1,32
Elasticity w.r.t. to UV -3,68
Median lag from UV 35,98

1,12
-3,43
35,37

0,97
-3,22
43,94

AlogC
Coefficient
0,58905
0,00037
-0,04080
-0,13354
-0,05720
-0,11616

0,01883

0,50668
35,77611
1,99389
1,81105
0,40430

t-Statistic

5,34432
2,70039
-6,07018
-5,87462
-2,35071
-1,49679

1,52490

3/04/2020 10/05/2020

216

0,89
-3,27
37,64

AlogC
Coefficient
0,48741
0,00037
-0,03519
-0,11507
-0,03496
-0,11164

0,02315

0,25040
10,74507
1,99653
1,82666
0,40120

t-Statistic

2,65452
2,49571
-3,01989
-3,17656
-1,04891
-1,36001

1,47872

3/20/2020 10/05/2020

200

1,04
-3,27
40,35



Dependent Variable:

Constant

Trend

logC(-1)

logUV(-28)
A(14)logUV(-14)
logUVdev.LRAv.(-15)7

logStringency(-21)
logTransit mobility(-21) Apple
logRecretion mob.(-21) Google

R-squared

F-statistic

Durbin-Watson stat
LM(2)AA

LM / Prob. Chi-Square(2) A

Sample (adjusted):
Included observation:

Germany

AlogC
Coefficient t-Statistic
0,62183 15,97510
0,00032 6,18957
-0,03964 -11,01701
-0,13863 -14,14570
-0,08132 -3,26431
0,68076
116,74980
1,69209
5,37017
0,06820
2/29/2020 10/09/2020
224

Coefficient

0,57627
0,00025
-0,03987
-0,12475
-0,08376
-0,20186

0,70217
0,70217
1,82226
1,29952
0,52220

224

t-Statistic

14,62604
4,90722
-11,44458
-12,33416
-3,47194
-3,95898

2/29/2020 10/09/2020

AlogC
Coefficient  t-Statistic
0,43224 6,36318
0,00015 2,31522
-0,02462 -3,60634
-0,06401 -2,50821
-0,04537 -1,61686
-0,13966  -2,50345
-0,07519  -2,58640
0,71108
89,01098
1,90096
0,95157
0,62140
2/29/2020 10/09/2020
224

ANogUVdev.LRAVv. = log(42 day moving sum of UV) - log(42 day moving sum of the daily average of UV in 2005-2019).
AN Breusch-Godfrey Serial Correlation LM Test.

Long-run elsticity of new Covid-19 cases

Underlying growth rate, % / day

Elasticity w.r.t. to UV
Median lag from UV

0,79
-3,50
45,14

0,63
-3,13
45,04

0,61
-2,60
55,81

AlogC
Coefficient
0,317849
5,03E-05
-0,035984
-0,090367
-0,052087
-0,032901

0,066621

0,712916
89,8126
1,882433
0,733275
0,6931

t-Statistic

3,222976
0,574677
-9,75206
-5,777362
-1,987193
-0,423616

2,849898

2/29/202010/09/2020

224

0,14
-2,51
46,91

AlogC
Coefficient
0,47310
0,00015
-0,04460
-0,12652
-0,09253
-0,05502

0,06936

0,60234
49,73249
0,81324
39,70008
0,00000

t-Statistic

4,73278
2,41100
-7,01758
-8,13236
-5,39608
-0,96446

2,83030

3/20/2020 10/09/2020

204

0,34
-2,84
43,19



Dependent Variable:

Constant

Trend

logC(-1)

logUV(-21)
AlogUVdev.LRAv.(-14)A

logStringency(-21)
logTransit mobility(-21) Apple
logRecretion mob.(-21) Google

R-squared

F-statistic

Durbin-Watson stat
LM(2)AA

LM / Prob. Chi-Square(2)r»

Sample (adjusted):
Included observation:

Finland

AlogC
Coefficient t-Statistic
0,46958 9,90543
0,00034 5,06696
-0,03888 -5,64519
-0,11218 -9,31406
0,31563
32,28324
1,94795
0,18718
0,91070
3/10/2020 10/09/2020
214

AlogC
Coefficient  t-Statistic
0,45984 9,69923
0,00034 4,98628
-0,03683 -5,31296
-0,11010 -9,15667
-0,06663 -1,87673
0,32697
25,38375
1,99171
0,26800
0,87460
3/10/2020 10/09/2020
214

AlogC
Coefficient  t-Statistic
0,51685 9,19025
0,00051 4,41131
-0,05713 -4,42333
-0,15661 -5,64646
-0,07888 -2,19669
0,08281 1,85835
0,33796
21,23607
1,99802
0,42601
0,80820
3/10/2020 10/09/2020

214

AlogC
Coefficient  t-Statistic
0,74438 4,50785
0,00057 3,89262
-0,05373  -4,60892
-0,14725  -6,16802
-0,05617  -1,56923
-0,07897  -1,79801
0,33727
21,17052
1,98925
0,42047
0,81040
3/10/2020 10/09/2020
214

AlogC
Coefficient t-Statistic
0,31312 1,08078
0,00029 1,91478
-0,02281 -1,23027
-0,08587 -2,41044
-0,05781 -1,89455
0,01933 0,24736
0,20475
10,19545
2,01510
3,08229
0,21410
3/20/2020 10/09/2020
204

AAlogUVdev.LRAVv. = log(14 day moving sum of UV) - log(14 day moving sum of the daily average of UV in 2005-2019)-log(14 day moving sum of UV(-14)) - log(14 day moving sum of the
daily average of UV in 2005-2019(-14)).
ANBreusch-Godfrey Serial Correlation LM Test.

Long-run elsticity of new Covid-19 cases

Underlying growth rate, % / day

Elasticity w.r.t. to UV
Median lag from UV

0,88
-2,89
38,48

0,91
-2,99
39,47

0,90
-2,74
32,78

1,06
-2,74
33,55

1,25
-3,77
51,04



Dependent Variable:

Constant

Trend

logD(-1)
logUV(-42)
A(21)logUV(-21)

logStringency(-42)
logTransit mobility(-42) Apple
logRecretion mob.(-42) Google

R-squared

F-statistic

Durbin-Watson stat
LM(2)AA

LM / Prob. Chi-Square(2) A

Sample (adjusted):
Included observation:

France

AlogD
Coefficient
0,88074
0,00029
-0,03379
-0,18336
-0,13294

0,45949
42,29229
1,96930
2,09858
0,35020

t-Statistic

12,42599
3,78791
-5,93820
-11,84462
-6,41240

3/20/2020 10/09/2020

204

ABreusch-Godfrey Serial Correlation LM Test.

Long-run elsticity of Covid-19 deaths
Underlying growth rate, % / day

Elasticity w.r.t. to UV
Median lag from UV

0,86
-5,43
62,17

AlogD
Coefficient
0,51947
0,00005
-0,01914
-0,07609
-0,06933

-0,07304

0,48188
36,83018
2,09027
1,29558
0,52320

3/20/2020 10/09/2020

204

0,25
-3,98
77,87

t-Statistic

3,66475
0,43386
-2,55150
-1,91698
-2,32804

-2,92529

AlogD
Coefficient
0,98201
0,00038
-0,03619
-0,20387
-0,13577

-0,01007

0,46151
33,93893
1,97142
2,06341
0,35640

t-Statistic

7,15759
2,93210
-5,70884
-7,18148
-6,46427

-0,86227

3/20/2020 10/09/2020

204

1,05
-5,63
60,80

AlogD
Coefficient
0,52589
0,00034
-0,01766
-0,11782
-0,07639

-0,00147

0,18620
8,09954
2,04825
1,87850
0,39090

t-Statistic

1,46907
2,47258
-1,16743
-1,74895
-1,83519

-0,07967

4/10/2020 10/09/2020

183

1,95
-6,67
80,91



Dependent Variable:

Constant
Trend

logD(-1)
logUV(-44)
A(7)logUV(-23)

logStringency(-42)
logTransit mobility(-42) Apple
logRecretion mob.(-42) Google

R-squared

F-statistic

Durbin-Watson stat
LM(2)AA

LM / Prob. Chi-Square(2) AA

Sample (adjusted):
Included observation:

Germany

AlogD
Coefficient
0,87671
0,00013
-0,05648
-0,17153
-0,10320

0,59547
73,23298
1,72775
1,45088
0,48410

3/20/2020 10/09/2020
204

ANBreusch-Godfrey Serial Correlation LM Test.

Long-run elsticity of Covid-19 deaths
Underlying growth rate, % / day

Elasticity w.r.t. to UV
Median lag from UV

0,22
-3,04
55,92

t-Statistic

15,75324
1,35034
-9,45709
-11,76544
-2,20143

AlogD
Coefficient  t-Statistic
1,02303 7,89567
0,00016 1,66446
-0,06733 -6,39431
-0,21627 -5,59808
-0,10058 -2,14633
0,04171 1,25015
0,59864
59,06467
1,71443
1,15653
0,56090
3/20/2020 10/09/2020
204
0,24
-3,21
53,94

AlogD
Coefficient t-Statistic
1,18866 8,04214
0,00045 2,65045
-0,06113 -9,77376
-0,22650 -8,04678
-0,07190 -1,48576
-0,05938 -2,27440
0,60577
60,84949
1,76045
1,52273
0,46700
3/20/2020 10/09/2020
204
0,73
-3,70
54,99

AlogD
Coefficient
0,65935
0,00035
-0,02717
-0,13798
-0,07047

t-Statistic
3,24678
3,64426
-2,56737
-4,36275
-2,18239

-0,02367 -0,78111
0,29757
14,99639
1,63353
7,94453
0,01880

4/10/2020 10/09/2020
183

1,30
-5,08
69,16



Dependent Variable:

Constant

Trend

logD(-1)

logUV(-28)
AlogUVdev.LRAv.(-12)»

logStringency(-42)
logTransit mobility(-42) Apple
logRecretion mob.(-42) Google

R-squared

F-statistic

Durbin-Watson stat
LM(2)AA

LM / Prob. Chi-Square(2)A»

Sample (adjusted):
Included observation:

Finland

AlogD
Coefficient  t-Statistic
0,48201 4,35335
-0,00005 -0,25717
-0,03888 -3,13067
-0,10105 -3,43397

0,12054
8,31493
2,03303
0,81932
0,66390

3/23/202010/09/2020
186

AlogD
Coefficient t-Statistic
0,55041 4,90274
-0,00002 -0,12482
-0,04276 -3,46903
-0,11672 -3,94045
-0,20377 -2,56759
0,15145
8,07596
2,07388
0,57958
0,74840
3/23/2020 10/09/2020
186

AlogD
Coefficient t-Statistic
0,31880 2,09888
-0,00026  -1,23490
-0,02155  -1,39452
0,00132 0,02189
-0,20559 -2,61874
-0,16211  -2,23488
0,17436
7,60229
2,16206
1,30798
0,52000
3/23/2020 10/09/2020
186

AlogD
Coefficient t-Statistic
-0,18583 -0,66436
-0,00059 -2,18903
-0,03306 -2,63373
-0,00906 -0,19068
-0,25158 -3,16050
0,19220  2,86328
0,18841
8,35739
2,17841
1,65882
0,43630
3/23/2020 10/09/2020
186

AlogD
Coefficient
0,21083
-0,00047
-0,06112
-0,11089
-0,32500

0,21744

0,11998
4,41744
2,16851
1,25497
0,53390

t-Statistic
0,47987
-2,03388
-2,57719
-1,56399
-3,19849

2,35042

3/23/2020 10/09/2020

186

AAlogUVdev.LRAVv. = log(14 day moving sum of UV) - log(14 day moving sum of the daily average of UV in 2005-2019)-log(14 day moving sum of UV(-14)) - log(14 day moving sum of the
daily average of UV in 2005-2019(-14)).
ANBreusch-Godfrey Serial Correlation LM Test.

Long-run elsticity of Covid-19 deaths

Underlying growth rate, % / day

Elasticity w.r.t. to UV
Median lag from UV

-0,12
-2,60
45,48

-0,05
-2,73
43,86

-1,22
0,06
59,82

-1,78
-0,27
48,62

-0,78
-1,81
38,99



Including Covid-19 policy stringency indicator (Oxford) or other mobility variables in the Sweden-Finland new Covid-19 cases equation

Dependent Variable:

Constant

logC(-1)

logUV(-21)

logTransit mobility(-42) Apple

logRecreation mob.(-42) Google
logWork mob.(-42) Google
logStringency(-42)

R-squared

F-statistic

Durbin-Watson stat
LM(2)A

LM / Prob. Chi-Square(2)?

Sample (adjusted):
Included observation:

Sweden minus Finland

AlogC
Coefficient t-Statistic
0,01459 1,62911

-0,02848 -3,44715
-0,20344 -2,72864
0,27727 4,99986

0,12353
9,91279
1,98515
0,06154
0,96970

3/08/2020
10/08/2020
215

ABreusch-Godfrey Serial Correlation LM Test.

Long-run elasticity of new Covid-19 cases

Transit Mobility (Apple)
Recreation Mobility (Google)
Work Mobility (Google)
Stringency

Median lag, days

9,7

66

AlogC
Coefficient
0,00791
-0,02562
-0,10138
0,14342

0,14326

0,15234
7,95269
1,87043
3,65373
0,16090

4/10/2020 10/08/2020

182

5,6

5,6

69

t-Statistic

0,86840
-2,68632
-1,14393

0,81423

0,72263

AlogC
Coefficient
0,00674
-0,02277
-0,08940
0,19562

0,11846

0,15380
8,04266
1,87485
3,67055
0,15960

t-Statistic

0,76601
-2,85239
-1,00803

2,15306

0,91002

4/10/2020 10/08/2020

182

8,6

5,2

72

AlogC
Coefficient t-Statistic
0,00333 0,35219
-0,01889 -2,24882
-0,11835 -1,27858
0,23946 4,35009
-0,03335 -1,22096
0,16030
7,97027
1,88734
2,36416
0,30660
4/20/2020 10/08/2020
172
12,7
-1,8
78



Including Covid-19 policy stringency indicator (Oxford) or other mobility variables in the Sweden-Finland new Covid-19 deaths equation

Dependent Variable:

Constant

logD(-1)

logUV(-21)

logTransit mobility(-63) Apple

logRecretion mob.(-63) Google
logWork mob.(-63) Google
logStringency(-63)

R-squared

F-statistic

Durbin-Watson stat
LM(2)A

LM / Prob. Chi-Square(2)?

Sample (adjusted):
Included observation:

Sweden minus Finland

AlogD

Coefficient t-Statistic

0,04184
-0,08404
0,53280
0,83789

0,12543
7,31450
2,26096
0,68614
0,70960

3/29/2020
10/05/2020
157

ABreusch-Godfrey Serial Correlation LM Test.

Long-run elasticity of new Covid-19 deaths

Transit Mobility (Apple)
Recreation Mobility (Google)
Work Mobility (Google)
Stringency

Median lag, days

10,0

71

1,49421
-3,40532
2,89641
4,43932

AlogD
Coefficient t-Statistic
0,03810 1,21132
-0,06023 -1,90776
0,33580 1,39404
1,40873 3,48733
-0,84490 -1,68532
0,14739
5,18613
2,42841
3,25278
0,19660

5/01/2020 10/05/2020
125

23,4
-14,0

74

AlogD
Coefficient t-Statistic
0,04916 1,55706
-0,08988 -3,16322
0,51351 2,42600
0,65835 2,36080
0,34518 0,95206
0,13375
4,63219
2,31867
0,77689
0,67810

5/01/2020 10/05/2020
125

7,3
3,8

70

AlogD
Coefficient
0,04468
-0,08521
0,45672
0,81220

-0,03332

0,12926
4,08236
2,33812
0,72242
0,69680

t-Statistic

1,35900
-2,92709
1,92650
3,55855

-0,50390

5/11/202010/05/2020

115

9,5

-0,4
71
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