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1. How much does your fear of Covid-19 affect your daily life? 
a. A lot
b. Moderately
c. Not at all

2. When do you believe the US will get Covid-19 under control?
a. By the end of spring 2021
b. By the end of 2021
c. Later than 2021

3. Will major universities (like Princeton) mostly return to traditional forms of 
teaching post-Covid or do you expect the teaching to change fundamentally?

a. Return
b. Change 2

Poll Results



1. Health crisis
 Behavioral response (social distancing) matters
 Fear/anxiety or externality

2. Economic crisis
 Record unemployment, GDP drop, …
 K-recession (winner and losers)

3. Financial crisis
 Record stock market levels, IPO issuance of stocks (SPACs) and bonds, …
 Financial market disconnect?
 The illusory health-wealth tradeoff

and long-run congruence
 Lockdown vs. shutdown
 Social distancing -> lower GDP now, but higher GDP in the long-run
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Markus’ Introductory Remarks

Special purpose 
acquisition companies



 Health crisis is the driver!
 Aerosols, UV light

Weather, seasonal patterns

 Questions:
 Should the stringency of COVID measures depend on 

sunshine/humidity/temperature (on that day)?
 Should we equip our AC units with UV lights?

 X           Niels Finsen 
(Nobel Prize in 
medicine, 1903) 
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Health focus



Thank you!
markus@princeton.edu
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Seasonality of Covid-19 - why it matters
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October 22, 2020
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Two hypotheses

1. Covid-19 is seasonal
Strong wave in the fall, weak (or no) wave in the spring
Historical and current evidence

2. Seasonality is driven by UV 
Physical and empirical case for UV
UV strong relative to other factors
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Outline

Historical vs current patterns

The case for UV

Mobility and stringency

Regression results

Qualifications

Conclusion
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Historical vs current patterns
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Data from all corona tests in seven hospitals in Stockholm area in 2010-2019

Source: Neher at al (2020) https://smw.ch/article/doi/smw.2020.20224
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Mortality rate (per 10 000) in 14 European 
countries from 1917 to 1921. 

https://europepmc.org/backend/ptpmcrend
er.fcgi?accid=PMC4634693&blobtype=pdf

Source: Ansart et al (2009), Mortality burden of the 
1918–1919 influenza pandemic in Europe. 
Influenza and Other Respiratory Viruses, 3, 99–106.

”Excess-death curves showed high
synchrony in 1918– 1919 with peak
mortality occurring in all countries during
a 2-month window (Oct–Nov 1918).”

https://europepmc.org/backend/ptpmcrender.fcgi?accid=PMC4634693&blobtype=pdf


New Covid-19 cases, 14 day sum of new Covid-19 cases per 100 000 persons March 1 – 20, October 2020 



New Covid-19 cases, 14 day sum of new Covid-19 cases per 100 000 persons 1 March 2020 – 20 October 2020 



The case for UV
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UV load (left scale) and new Covid-19 cases (right scale) in France, March 1 – 17 October 2020

UV in France

New Covid-19 cases in France
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South Africa

France

New Covid-19 cases in France and South Africa March 1 – 20, October 2020 



UV load in South Africa and France August 2019 – October 2020

South Africa France



France

South Africa

Australia

New Covid-19 cases in France, South Africa and Australia March 1 – 20 October, 2020 



Mobility and Stringency
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New Covid-19 cases in Finland, Germany, France and Sweden March 1 – October 20, 2020 



16

Mobility (Retail & Recreation, left scale) and new Covid-19 cases (right scale) 1 March 2020 – 20 October 2020 



Policy stringency (left scale) and new Covid-19 cases 1 March 2020 – 20 October 2020 (right scale) in France

France  casesFrance policy 
stringency
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Policy stringency (left scale) and new Covid-19 cases 1 March 2020 – 20 October 2020 (right scale)



Regression
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Model for new Covid-19 cases

Low immunity → exponential case growth UV drives seasonality Policy to control Covid-19           Mobility

logC = η + μt + θlogUV + ωlogP + φlogM

20

C=14 day sum of new Covid-19 cases/100 000 persons (ECDC data)
t=time trend
UV=14 day sum of UV radiation load (country satellite data)
P=Policy stringency index, relative to pre-Covid time (Oxford University data)
F=Mobility, % deviation from pre-Covid-19 time at the start of 2020 (Google and Apple data)
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New Covid-19 cases equation with a lag structure and alternative additional explanatory variables   

France

Dependent Variable: ∆logC

Model 1 2 3 4

Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic

Constant 0,73290 13,16731 0,73488 13,36776 0,55801 6,72658 0,58905 5,34432

Trend 0,00060 7,42048 0,00053 6,29270 0,00029 2,46754 0,00037 2,70039

logC 1 day lag -0,04520 -8,48418 -0,04710 -8,86134 -0,02976 -3,68060 -0,04080 -6,07018

logUV 3 week lag -0,16623 -12,38027 -0,16160 -12,07227 -0,09581 -3,56828 -0,13354 -5,87462

logUV difference 3 week -0,03428 -1,62681 -0,06423 -2,67979 -0,01857 -0,64872 -0,05720 -2,35071

logUV deviation of long run level -0,17247 -2,51886 -0,06775 -0,88015 -0,11616 -1,49679

logStringency 3 week lag -0,06619 -2,81220

logTransit mobility 3 week lag 0,01883 1,52490

R-squared 0,48612 0,50119 0,51937 0,50668

F-statistic 49,89979 42,19993 37,64158 35,77611

Durbin-Watson stat 1,90173 1,96275 2,06519 1,99389

LM(2) # 3,78586 1,99549 1,34634 1,81105

LM / Prob. Chi-Square(2) # 0,15060 0,36870 0,51010 0,40430

# Breusch-Godfrey Serial Correlation LM Test.

Sample: 3/04/2020 10/05/2020

Included observations: 216

Long-run elsticity of new Covid-19 cases;

Underlying growth rate, % / day 1,32 1,12 0,97 0,89

Elasticity w.r.t. UV -3,68 -3,43 -3,22 -3,27

Median lag from UV 35,98 35,37 43,94 37,64



Long-run elasticity of new Covid-19 cases w.r.t. UV
New Covid-19 cases equation with alternative additional explanatory variables

   

Model 1 Model 2 Model 3

 = Model 1 + policy  = Model 1 + mobility

France -3,43 -3,22 -3,27

Germany -3,13 -2,60 -2,84

Finland -2,99 -2,74 -3,77



Mobility data (Retail and recreation) in Sweden and Finland

Finland mobility

Sweden mobility 



Mobility deviation in Sweden–Mobility deviation in Finland,   New cases in Sweden-New cases in Finland,
(left scale), %-points (right scale), cases per 100 000

Differences in transit mobility deviations from pre-Covid-19 time and in new Covid-19 cases between Sweden and Finland 

Source: Apple (mobility), EDCD (new Covid-19 cases)

”Natural experiment” - Sweden versus Finland



Mobility dev Sweden–Mobility dev Finland, New Cases in Sweden- New Cases in
(left scale) %-points (right scale) Covid-19 cases per 100 000

Differences in transit mobility deviations from pre-Covid-19 time and in new Covid-19 cases between Sweden and Finland 

Source: Apple (mobility), EDCD (new Covid-19 cases)

∆(logCS - logCF) = 0.015 - 0.028(logCS - logCF)(-1) + 0.277(logMS  - logMF)(-42) – 0.203(logUVS - logUVF)(-21) 
(1.6)  (-3.4)                                    (5.0)                                       (-2.7)



Qualifications
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Conclusions still tentative - but risks are high

• UV effects may come through other factors (behavioral patterns)

• Endogeneity and collinearity problems (possible instrument: UV 
affected by altitude – but also infections)

• We haven’t seen full cycle yet (US may still fall in line)

• Increase in testing affects case count and positivity rate
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Test Done (left scale) and new Covid-19 cases (right scale) in France, March 1 – 20 October 2020



Positivity Rate (left scale) and new Covid-19 cases (right scale) in France, March 1 – 20 October 2020



Conclusions
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Main takeaways

• Asymmetric waves:

• Virus has tail-winds in the fall – the next months may be very severe

• Virus has head-winds in the spring – we’ll get a rest over the summer

• Seasonality important for:

• Proactive policy

• Correct modeling
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THANKS!
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APPENDICES
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Annexes

Annex A: A simple model of Covid-19
Annex B: Data
Annex C: Possible reasons for large effects of mobility and UV on spread of Covid-19
Annex D: Challenges in modelling Covid-19
Annex E: Estimation results with robustness analysis



Annex A: A simple model of Covid-19 

Assumption 1: New Covid-19 cases per capita (or per 100 000), C, depend positively on the initial exponential growth rate of the epidemic, μ, and 
negatively on UV radiation load, UV, policy, P, and behavioral (fear), F, variables and population Covid-19 immunity rate, I. 

+    - - - -
(1) c=f(μ, uv, p, f, I)

where c=logC, uv=logUV, p=logP, f=logF. 

Annex C reports evidence that population Covid-19 immunity rate has stayed so low (e.g. 0.3 % in Finland) that I=0 is a reasonable approximation.

Assumption 2: Covid-19 deaths per capita depend positively on C and negatively on UV, P and F.
+    - - -

(2)    d=g(c, uv, p, f), where d=logD.

Assumption 3: Control and behavioral variables do not have statistically significant additional explanatory power in equations (1) and (2).

Assumption 3 was not made a priori, but empirical results provided partial support for it. This does not mean that, say, mobility does not affect 
spread of Covid-19. Rather, it indicates that it difficult to infer the effect of mobility on Covid-19 from equations (1) and (2). An apparent 
interpretation to this finding is that μ and UV explain, via their effects on Covid-19 cases and deaths, also the policy and behavioral reactions. This
leads to the following empirically testable assumption.

Assumption 4: The responses of control and behavioral variables, M, to Covid-19 cases and deaths are determined by μ and UV so that one can write
- +               - +

(3)    p=p(μ, uv), f=h(μ, uv).
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Substituting first (3) into (1), and taking into account that I=0 in (1), and substituting c from this into (2), onr can write
+    -

(4) d=j(μ, uv).

The model leads into a testable hypothesis that the deviation of the economy from its pre Covid-19 path is determined, other things being equal,
by μ and UV, which are exogeneous and reliably forecastable variables where μ is, in fact, a constant as long as I=0.

Relaxing assumption 4 that responses of control and behavioral variables to cases and deaths are determined by μ and UV, one can write

(5)  c=k(μ, uv, p, f).

(6)  d=l(μ, uv, p, f).

Assuming that P and F can be measured jointly with mobility M, and denoting m=logM, one can write

(7)  c=k(μ, uv, m).

(8)  d=l(μ, uv, m).

(7) and (8) are used to estimate the empirical country difference equation in the presentation. Note that assuming the same underlying growth 
rates μ in two countries, A and B, conditional on UV and its causes in terms of policy and behavior reactions, μ cancels out in the difference
Equations. One can then write the equations for Covid-19 cases and deaths as (9) and (10), which are used to estimate Sweden-Finland equations. 

(9) ) (cA -cB)=m{(mA-mB),(uvA-uvB)}

(10) (dA -dB)=n{(mA-mB),(uvA-uvB)}.
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Annex B: Data

This annex lists the data sources and it provides graphs of the variables used in estimation. From the graphs on Covid-19 deaths, it is apparent
that there are irregularities in that data in the case of Spain. Assuming that these irregularities are to due to reporting lags and corrections
made afterwards but that the total cumulative number of deaths is measured correctly, a mechanical smoothing was applied by, in case of a 
negative death observation that negative obsevation was evenly distributed to 30 previous days and similar smoothing was applied for a very
large positive observations. For Italy’s Covid-19 cases equation, 14 days moving averages, instead of 14 days cumulative numbers, wew used. 

Data source: Covid-19 cases and deaths
All the data on Covid-19 cases and deaths used in the empirical analysis are from European Centre for Disease Prevention and Control (ECDC).
https://www.ecdc.europa.eu/en/publications-data/download-todays-data-geographic-distribution-covid-19-cases-worldwide

Data sources: UV load
The UV load is measured as Erythemal Daily Dose (J/m^2) or EDDose
The UV data used in the estimation was obtained from following national data sources:
Finland: https://avdc.gsfc.nasa.gov/pub/data/satellite/Aura/OMI/V03/L2OVP/OMUVB/aura_omi_l2ovp_omuvb_v03_helsinki.kumpula.txt

Sweden https://avdc.gsfc.nasa.gov/pub/data/satellite/Aura/OMI/V03/L2OVP/OMUVB/aura_omi_l2ovp_omuvb_v03_norrkoeping.txt

https://avdc.gsfc.nasa.gov/pub/data/satellite/Aura/OMI/V03/L2OVP/OMUVB/aura_omi_l2ovp_omuvb_v03_vindeln.txt

Germany  https://avdc.gsfc.nasa.gov/pub/data/satellite/Aura/OMI/V03/L2OVP/OMUVB/aura_omi_l2ovp_omuvb_v03_offenbach.txt
France https://avdc.gsfc.nasa.gov/pub/data/satellite/Aura/OMI/V03/L2OVP/OMUVB/aura_omi_l2ovp_omuvb_v03_palaiseau.txt
Italy https://avdc.gsfc.nasa.gov/pub/data/satellite/Aura/OMI/V03/L2OVP/OMUVB/aura_omi_l2ovp_omuvb_v03_ispra.txt
Spain https://avdc.gsfc.nasa.gov/pub/data/satellite/Aura/OMI/V03/L2OVP/OMUVB/aura_omi_l2ovp_omuvb_v03_el.arenosillo.txt
The authors thank experts at the Finnish Meteorological Institute for advise and help with sattellite data.

Data source: Mask wearing (This data was not used to estimate the equations of Annex B. Next slide shows the limited variability in that data.)
COVID-19 resources. Institute for Health Metrics and Evaluation. University of Washington, USA. http://www.healthdata.org/covid

https://www.ecdc.europa.eu/en/publications-data/download-todays-data-geographic-distribution-covid-19-cases-worldwide
https://avdc.gsfc.nasa.gov/pub/data/satellite/Aura/OMI/V03/L2OVP/OMUVB/aura_omi_l2ovp_omuvb_v03_helsinki.kumpula.txt
https://avdc.gsfc.nasa.gov/pub/data/satellite/Aura/OMI/V03/L2OVP/OMUVB/aura_omi_l2ovp_omuvb_v03_norrkoeping.txt
https://avdc.gsfc.nasa.gov/pub/data/satellite/Aura/OMI/V03/L2OVP/OMUVB/aura_omi_l2ovp_omuvb_v03_vindeln.txt
https://avdc.gsfc.nasa.gov/pub/data/satellite/Aura/OMI/V03/L2OVP/OMUVB/aura_omi_l2ovp_omuvb_v03_offenbach.txt
https://avdc.gsfc.nasa.gov/pub/data/satellite/Aura/OMI/V03/L2OVP/OMUVB/aura_omi_l2ovp_omuvb_v03_palaiseau.txt
https://avdc.gsfc.nasa.gov/pub/data/satellite/Aura/OMI/V03/L2OVP/OMUVB/aura_omi_l2ovp_omuvb_v03_ispra.txt
https://avdc.gsfc.nasa.gov/pub/data/satellite/Aura/OMI/V03/L2OVP/OMUVB/aura_omi_l2ovp_omuvb_v03_el.arenosillo.txt
https://covid19.healthdata.org/germany?view=resource-use&tab=trend&resource=all_resources


Variables used in Covid-19 cases and deaths equations

Definitions of variables used in estimating the regression equations:
logC= log(14 days cumulative number of Covid-19 cases/100 000 persons)
logD= log(14 days cumulative number of Covid-19 deaths/100 000 persons)
logUV14=log(14 days cumulative sum of UV radiation load). 
logUV28S and logUV35S are the corresponding 28 and 35 days sums, respectively.
logWork mobility=log(14 days moving average of Google work-related mobility variable). 
This and other publicly available Google mobility variables are perecentage differences from the beginnig of year reference period. 
Hence, if, e.g., mobility was 75 % below the reference period level, the variable would have a value of -75. In this case, the
corresponding variable would be reported as 25, i.e. the per cent level from reference period.
In the empirical application, the Google variables were used in a similar way as the Apple variables are reported. 
This obtained by adding 100 to reported Google mobility variables.
logRec. mobility Google=log(14 days moving average of Google recreation-related mobility variable).
logTransit mobility Apple= log(14 days moving average of Apple transit mobility variable). 
logStringency=log(policy stringency index, relative to pre-Covid time) (Oxford University data)
T=Time trend.
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UV radiation estimated by satellites

Background

• Local private Davis Enviromonitor weather station in Palojoki Finland https://www.davisinstruments.com/enviromonitor/

• Dutch-Finnish built Ozone Monitoring Instrument (OMI) on-board Nasa’s EOS-Aura satellite was launched in 2004. It provides global and nearly 
daily UV radiation estimates. UV radiation products are developed by the Finnish Meteorological Institute.

Satellite UV algorithm

• The UV radiation that reaches the Earth surface depends on atmospheric ozone, aerosols, clouds and surface reflection. Satellite measures 
ozone and clouds in the atmosphere. The UV radiation is estimated using radiative transfer modeling and climatology for aerosols and surface 
reflection.

• Global data are available via https://avdc.gsfc.nasa.gov/pub/data/satellite/Aura/OMI/V03/L2OVP/OMUVB/
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Why leisure & work mobility may have large effects on spread of Covid?

The basic reproduction number R0=βγ, where β=average infection-
producing contacts per unit time and γ=mean infectios period.  Assume:
- Leisure- and work-related mobility involve contacts with other people.
- Under normal conditions R0=2.5, i.e. one infected infects 2.5 others.
- An infected person infects for 5 days while she is asymptomatic.
- After 5 days she gets symptoms, quarantines and stops infecting others. 
- Reduce R0 by 50% (R0=1.25) or by 75% (R0=0.625).
Consider one infected person. The total number of people that would
become infected in 30 days = 1 + R01 + R02 + R03 + R04 + R05 + R06 , i.e.

One caveat is that when R0<1, the number of cases will actually decline
over time and eventually go to zero. This is because an infected person 
cannot infect 0.625 people, it is either zero, one or more. When it is zero, 
transmission chain ends. Exact calculation of the 75% reduction thus
requires more complex probability calculations.

The text and graph are based on ”Coronavirus Calculations & Infographic” 
by Robert A.J. Signer, Ph.D., Assistant Professor of Medicine, University of 
California San Diego. https://robertsigner.wordpress.com/coronavirus/

This annex provides short explanations of possible reasons why mobility and UV may have large effects on spread of Covid-19.

Annex C: Possible reasons for large effects of mobility and UV on the spread of Covid-19

How less contacts reduce spread of Covid-19?

https://robertsigner.wordpress.com/coronavirus/


Why UV radiation may have large effects on spread of Covid-19?
- In, e.g., Europe and the US, annual corona virus and influenza cycles are closely aligned with the strong UV cycle (following four slides).
Ultraviolet light is usually divided into three groups by radiation wavelengths: 
1. Ultraviolet A or UVA that has wavelength of 320-400 nanometers (nm). UVA from sun reaches earth’s surface.
2. Ultraviolet B or UVB that has wavelength of 280–320 nm
3. Ultraviolet C or UVC that has wavelength of 200–280 nm. UVC from sun does not reach, or reaches to a limited extent, earth’s surface. 
UVC’s germicidal effectiveness peak wavelength is 260–265 nm, which is equivalent to the peak of ultraviolet radiation absorption of nucleic acids. 
Since UVA radiation is insufficiently absorbed by viral nucleic acid, UVA is not considered germicidal. However, in a recent article, Rezaie et al (2020)* 
report results that UVA effectively reduces bacteria and viruses including coronavirus. Rezaie et al (2020) note that:
- “Our study has several limitations. While multiple daily short-term UVA treatments did not harm human cells and appeared safe in vivo, longer term 

use may require further study. We assessed UVA against several microbes, but more studies are needed to address additional pathogens, including 
multi-drug resistant organisms, mycobacteria, and archaea. We did not evaluate UVA against SARS-CoV-2 specifically. However, given the efficacy of 
UVA against coxsackievirus and CoV-229 (both positive sense, single-stranded RNA viruses), SARS-CoV-2 is likely also UVA-sensitive.”

In a recent article, Ratnesar-Shumate et al (2020)** find that simulated sunlight rapidly inactivates SARS-CoV-2 on surfaces. They note that:
- “Simulated sunlight rapidly inactivated SARS-CoV-2 suspended in either simulated saliva or culture media and driedon stainless steel coupons. 

Ninety percent of infectious virus was inactivated every 6.8 minutes in simulated saliva and every 14.3 minutes in culture media when exposed to 
simulated sunlight representative of the summer solstice at 40°N latitude at sea level on a clear day. Significant inactivation also occurred, albeit at 
a slower rate, under lower simulated sunlight levels. The present study provides the first evidence that sunlight may rapidly inactivate SARS-CoV-2 
on surfaces, suggesting that persistence, and subsequently exposure risk, may vary significantly between indoor and outdoor environments.”

Merrow and Urban (2020)*** note also the possible immune resistance enhacing effect of UV:
- ”Ultraviolet (UV) light effectively inactivates many viruses (19), especially larger coronaviruses (24) like SARS-CoV-1 (25). Sunny days might decrease

outdoor transmission or promote immune resistance via vitamin D production (26).” 

*Rezaie A, Leite GGS, Melmed GY, Mathur R, Villanueva-Millan MJ, Parodi G, et al. (2020) Ultraviolet A light effectively reduces bacteria and viruses including coronavirus. 
PLoS ONE 15(7): e0236199. https://doi.org/10.1371/journal.pone.0236199 https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0236199

**Ratnesar-Shumate et al (18 other authors) (2020),  Simulated sunlight rapidly inactivates SARS-CoV-2 on surfaces. The Journal of Infectious Diseases, Volume 222, Issue 2, 
15 July 2020, Pages 214–222, https://doi.org/10.1093/infdis/jiaa274 https://academic.oup.com/jid/article/222/2/214/5841129

***Merow Cory and Mark C. Urban (2020), Seasonality and uncertainty in global COVID-19 growth rates. PNAS, 2020 October,1-9. https://doi.org/10.1073/pnas.2008590117
https://www.pnas.org/content/early/2020/10/14/2008590117

https://www.pnas.org/content/early/2020/10/14/2008590117#ref-19
https://www.pnas.org/content/early/2020/10/14/2008590117#ref-24
https://www.pnas.org/content/early/2020/10/14/2008590117#ref-25
https://www.pnas.org/content/early/2020/10/14/2008590117#ref-26
https://doi.org/10.1371/journal.pone.0236199
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0236199
https://doi.org/10.1093/infdis/jiaa274
https://academic.oup.com/jid/article/222/2/214/5841129
https://doi.org/10.1073/pnas.2008590117
https://www.pnas.org/content/early/2020/10/14/2008590117




Nelson, M., Holmes, E. The evolution of epidemic influenza. Nature Review Genetics
8, 196–205 (2007). https://doi.org/10.1038/nrg2053 https://www.nature.com/articles/nrg2053#Fig5

Li et al (2020), Journal of Infectious Diseases. https://academic.oup.com/jid/article/222/7/1090/5874220

Influenza-like illness (ILI) by WHO Influenza virus activity peaks at similar times at 
similar latitude, e.g. during winter and early spring in the northern hemisphere. 

Heat maps of global monthly activity of seasonal coronaviruses (sCoVs), influenza virus 
(IFV), and respiratory syncytial virus (RSV). Each square indicates share of virus cases are
observed in a month. AAP=annual average % as the strength of virus. 

https://doi.org/10.1038/nrg2053
https://www.nature.com/articles/nrg2053#Fig5
https://academic.oup.com/jid/article/222/7/1090/5874220


https://www.sciencedirect.com/science/article/pii/S0048969720353456

Source: Tang et al (2020)

Next slide shows the seasonality of positive corona test results in the four census regions
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https://www.sciencedirect.com/science/article/pii/S0048969720353456


For simplicity, consider only peak UV 

At peak UV, rate of positive corona test results close to zero %

Source: Tang et al (2020) 47
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Annex D: Challenges in modelling Covid-19

Empirical modelling of Covid-19 includes following challenges:
- The epidemic is still at a relatively early stage. In Europe, the epidemic started more generally in March 2020.
- There seems to be already a strong seasonal component because the epidemic slowed abruptly in Spring.
- That slowdown, in spite of simultaneous easing of control measures and low immunity rate, supports strong seasonality.    
- In practice, all control and behavioral variables, to explain Covid-19 cases or deaths, are endogenous to those variables.
- Moreover, instrumental variable estimation is hard when potential instruments seem to be endogenous to cases or deaths.
In earlier research, following solutions have been applied due to lack of data and other difficulties:
- Neher et al (2020) and Kissler et al (2020) have applied seasonal forcing.  https://smw.ch/article/doi/smw.2020.20224
- https://science.sciencemag.org/content/early/2020/04/14/science.abb5793.full
- Many studies use time varying and multiple parameter functional forms to fit models to Covid-19 data.
The drawbacks of these approaches include the following:
- Covid-19 seasonality remains a black box.
- When the drivers of seasonality are unknown, it is difficult to infer the true parameters of other drivers of Covid-19 epidemic.
- With time varying and increasing number of parameters, the models become less informative.
- These models may still be of use in forecasting, but they may not help one to understand the epidemic.
To overcome these drawbacks, this presentation:
- Uses previous research on corona and influenza seasonality to model seasonality explicitly.
- Takes into account that the Covid-19 epidemic does not seem to follow, say, a SIR-model given the very low immunity rate.
- Aims, based on previous research, at a as simple and parsimonious model as possible.
- Puts forward an empirically easily refutable hypothesis about the drivers of Covid-19.

Epidemiologist Marc Lipsitch*: “…at least three things that are affecting the growth rate or decline rate of the epidemic.”
1. ”The first is control measures…”. “…control measures are not just what the government says to do, but what people actually do…”
2. “The second is seasonal variation in terms of the suitability of environmental conditions for transmission. 
3. “… the third is population level immunity.”
https://www.hsph.harvard.edu/news/features/coronavirus-covid-19-press-conference-with-marc-lipsitch-08-13-20/

https://smw.ch/article/doi/smw.2020.20224
https://science.sciencemag.org/content/early/2020/04/14/science.abb5793.full
https://www.hsph.harvard.edu/news/features/coronavirus-covid-19-press-conference-with-marc-lipsitch-08-13-20/
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The Finnish Institute for Health and Welfare (THL) 
publishes regular results on a serological population study on 
its website. The main purpose of the study is to obtain up-to-
date information on how large a proportion of the population 
among different age groups and regions have developed 
antibodies to coronavirus (seroprevalence).

The study is based on random sampling. The presence of 
antibodies is studied using two different tests developed at 
THL. First, a sensitive test is used to measure whether the 
sample contains antibodies identifying coronavirus SARS-CoV-
2. Positive results are then verified with a microneutralisation
test that measures the ability of antibodies to neutralise the 
virus, which provides a very reliable indication whether the 
sample contains antibodies that have formed specifically for 
the new coronavirus. Neutralizing antibodies can be 
considered the most reliable method to detect coronavirus 
infection, but only a few microneutralization (MNT) positive 
results have been observed.

Results reported by several countries on the proportion of 
antibody-positive samples (seroprevalence) vary greatly and 
are mostly based on the results of individual antibody tests 
where neutralizing antibodies have not been measured. There 
are differences between study samples and the performance 
of the tests used. Even with an accurate antibody test, the risk 
of false positives is significant when the actual number of 
infections in the population is low.

So far, samples have only been collected from people aged 18 
to 69. Approximately 750 subjects are invited to participate in 
the study each week, but participation is spread across 
several calendar weeks. So far, around 60% of those invited 
have participated in the study.

Sample week
Tested

samples
Positive
tests

Share with positive
tests

Samples which 
belong to an 
MNT test set  

MNT-tested
samples

MNT-
positive
samples

Share of MNT positiive
samples 

2020-W16 362 9 2.49% (1.31–4.66) 362 9 1 0.28% (0.05–1.55) 

2020-W17 674 17 2.52% (1.58–4) 674 17 2 0.3% (0.08–1.08) 
2020-W18 426 12 2.82% (1.62–4.86) 426 12 2 0.47% (0.13–1.7) 
2020-W19 514 8 1.56% (0.79–3.04) 514 8 0 0% (0–0.74) 
2020-W20 401 4 1% (0.39–2.54) 401 4 1 0.25% (0.04–1.4) 
2020-W21 210 9 4.29% (2.27–7.94) 210 9 1 0.48% (0.08–2.65) 
2020-W22 178 5 2.81% (1.21–6.41) 178 5 0 0% (0–2.11) 
2020-W23 214 8 3.74% (1.91–7.2) 214 8 1 0.47% (0.08–2.6) 
2020-W24 174 5 2.87% (1.23–6.55) 174 5 0 0% (0–2.16) 
2020-W25 78 0 0% (0–4.69) 78 0 0 0% (0–4.69) 
2020-W26 32 0 0% (0–10.72) 32 0 0 0% (0–10.72) 
2020-W27 85 5 5.88% (2.54–13.04) 85 5 0 0% (0–4.32) 
2020-W28 51 0 0% (0–7) 51 0 0 0% (0–7) 
2020-W29 7 0 0% (0–35.43) 7 0 0 0% (0–35.43) 
2020-W30 9 1 11.11% (1.99–43.5) 9 1 1 11.11% (1.99–43.5) 
2020-W31 75 2 2.67% (0.73–9.21) 75 2 1 1.33% (0.24–7.17) 
2020-W32 49 2 4.08% (1.13–13.71) 49 2 1 2.04% (0.36–10.69) 
2020-W33 64 1 1.56% (0.28–8.33) 64 2 0 0% (0–5.66) 
2020-W34 63 5 7.94% (3.44–17.27) 63 5 0 0% (0–5.75) 
2020-W35 48 2 4.17% (1.15–13.98) 48 2 1 2.08% (0.37–10.9) 
2020-W36 60 1 1.67% (0.29–8.86) 60 1 0 0% (0–6.02) 
2020-W37 17 0 0% (0–18.43) 17 0 0 0% (0–18.43) 

All weeks 3791 96 3791 97 12 

Share of 
positives

2.5 % 0.3 %

Weekly report of serological population study of Covid-19 in Finland based on random samples

Tested samples: Number of samples which have arrived at THL and for which an antibody test has been performed until the reporting 
day. Samples with positive antibodies: Number of tested samples with positive antibodies Samples which belong to an MNT test set: 
Number of samples which have been possible to consider in a microneutralisation test (MNT). The number of MNT positives should be 
compared to this number. MNT tested samples: Number of samples with positive antibody results for which a microneutralisation test 
was performed until the reporting date. MNT positive samples: Number of microneutralisation tested samples with a positive result.

Source: THL  https://www.thl.fi/roko/cov-vaestoserologia/sero_report_weekly_en.html 50

https://thl.fi/en/web/thlfi-en/research-and-expertwork/projects-and-programmes/serological-population-study-of-the-coronavirus-epidemic
https://www.thl.fi/roko/cov-vaestoserologia/sero_report_weekly_en.html


Low population Covid-19 immunity 

Epidemiological models assume typically that infections result in permanent or long lasting immunity. To take into account the 
decreasing effect of the increasing population immunity, typically a logistic model is  fitted to explain the evolution of the 
epidemic.  However, serological studies on Covid-19 suggest that seroprevalence has stayed low. For example, Stringhini et al 
(2020)* note (see also next slide):
“At what appears to be the tail end of the first wave of the pandemic in Switzerland, about one in ten people have developed 
detectable antibodies against SARS-CoV-2, despite the fact that it was one of the more heavily affected areas in Europe. Thus, 
assuming that the presence of the IgG antibodies measured in this study is, at least in the short term, associated with 
protection, these results highlight that the vast majority of the population is still immunologically naive to this new virus.”

The seroprevalence figures for France, Germany, Italy, Spain and Finland are even lower than in Switzerland. On July 13, the 
German authorities reported on a study that showed that only 1.3 % had antibodies in blood sample of 12 000 persons.  
https://www.reuters.com/article/us-health-coronavirus-germany-immunity-idUSKCN24E0X7 Also in the other four countries, low levels of 
antibodies have been detected. The results from a weekly random sample in Finland are presented in the previous slide. The 
possible explanations for the very low Covid-19 immunity rate in populations include that a) not all infected persons create 
antibodies and b) antibodies decrease relatively rapidly. According to recent study by Edridge et al (2020)**:
“Caution should be taken when relying on policies that require long-term immunity, such as vaccination or natural infection to 
reach herd immunity. Other studies have shown that neutralizing SARS-CoV-2 antibody levels decrease within the first 2 months 
after infection, especially after mild COVID-197,8, and we observed a similar decrease in anti-nucleocapsid antibodies of 
seasonal coronaviruses…” An exponential model is warranted as long as seroprevalence for Covid-19 continues to be very low. 

**Edridge, A.W.D., Kaczorowska, J., Hoste, A.C.R. et al. (2020), Seasonal coronavirus protective immunity is short-lasting. 
Nature Medicine (2020). https://doi.org/10.1038/s41591-020-1083-1 https://www.nature.com/articles/s41591-020-1083-1#citeas
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*Stringhini, S. et al (2020), Seroprevalence of anti-SARS-CoV-2 IgG antibodies in Geneva, Switzerland (SEROCoV-POP): a population-
based study. The Lancet Volume 396 Issue 10247 Pages 313-319 (August 2020). DOI: 10.1016/S0140-6736(20)31304-0
https://www.thelancet.com/journals/lancet/article/PIIS0140-67362031304-0/fulltext

https://www.reuters.com/article/us-health-coronavirus-germany-immunity-idUSKCN24E0X7
https://www.nature.com/articles/s41591-020-1083-1#ref-CR7
https://www.nature.com/articles/s41591-020-1083-1#ref-CR8
https://doi.org/10.1038/s41591-020-1083-1
https://www.nature.com/articles/s41591-020-1083-1#citeas
https://www.thelancet.com/journals/lancet/article/PIIS0140-67362031304-0/fulltext


Empirical finding: higher altitude reduces Covid-19 growth rate (two recent studies)

Arias-Reyes et al (2020a)
- ”... we analyze the epidemiologic data of COVID-19 of Tibet and high-altitude regions of Bolivia and Ecuador, and compare to lowland data, to test the

hypothesis that high-altitude inhabitants (+2500 m above sea-level) are less susceptible to develop severe adverse effect in acute SARS-CoV-2 virus 
infection. ...Our epidemiological analysis of the Covid-19 pandemic clearly indicates a decrease of prevalence and impact of SARS-CoV-2 infection in 
populations living at altitude of above 3,000 masl. ... Although the data of the present study suggest a strongly decreased pathogenicity of SARS-CoV-
2 in high-altitude, there is yet no evidence of an underlying physiological mechanisms that could affect to severity of infection.”

https://www.researchgate.net/publication/340793665_Does_the_pathogenesis_of_SARS-CoV-2_virus_decrease_at_high-altitude

Arias-Reyes et al (2020b):
- “We have suggested previously that the infection rate of this virus might be lower in people living at high altitude (over 2,500 m) compared to that in 

the lowlands. Based on data from official sources, we performed a new epidemiological analysis of the development of the pandemic in 23 countries 
on the American continent as of May 23, 2020. Our results confirm our previous finding, further showing that the incidence of COVID-19 on the 
American continent decreases significantly starting at 1,000 m above sea level (masl).”

- “Finally, evaluating the differences in the recovery percentage of patients, the death-to-case ratio, and the theoretical fraction of undiagnosed cases, 
we found that the severity of COVID-19 is also decreased above 1,000 m. We conclude that the impact of the COVID-19 decreases significantly with 
altitude.” https://www.medrxiv.org/content/10.1101/2020.07.22.20160168v2

An apparent explanation for the finding is the effect of altitude on UV radiation load. According to the WHO:

- “… at higher altitudes, a thinner atmosphere filters less UV radiation. With every 1000 metres increase in altitude, UV levels increase by 10% to 12%.”
https://www.who.int/uv/uv_and_health/en/

Consider Mexico Cityn ja Havanna in Cuba. These cities are roughly in the same latitude. Havanna is 50 meters and  Mexico City is 2268 meters above sea
level. During last 12 months, sum of daily UV radiation load has been 39 % higher in Mexico City compared to Havanna (see next slide). 
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https://www.researchgate.net/publication/340793665_Does_the_pathogenesis_of_SARS-CoV-2_virus_decrease_at_high-altitude
https://www.medrxiv.org/content/10.1101/2020.07.22.20160168v2
https://www.who.int/uv/uv_and_health/en/
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Evidence on 23 countries in the American continent: higher altitude reduces Covid-19 cases and the death-to-case ratio (annex C). Apparent reason, WHO: 
“… at higher altitudes, a thinner atmosphere filters less UV radiation. With every 1000 metres increase in altitude, UV levels increase by 10% to 12%.”

(approximately same geographical latitude)

Mexico City vs. Havanna (% diff., left scale) Mexico City (right scale)

Havanna (right scale)
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Annex E: Estimation results with robustness analysis 
1. Robustness of Covid-19 model for France, Germany and Finland with respect to adding alternatively the 

policy stringency index variable or one of the Apple or Google mobility variables 
a) Using cases as dependent variable
b) Using deaths as dependent variable

2. Robustness od Sweden-Finland difference model with respect to adding alternatively the policy stringency 
index variable or one of the Apple or Google mobility variables 

a) Using cases as dependent variable
b) Using deaths as dependent variable



Covid-19 cases are assumed to depend on an exponential growth rate and UV radiation load. A log-linear functional form is assumed. The long run
equation for Covid-19 cases is written as

(1) logC=η+μt+θlogUV+ωlogP+ξlogM,

where C=14 day sum of new Covid-19 cases per 100 000 persons, t=time trend, UV=load of UV radiation, P=policy stringency index, M=mobility variable 
(either a work- or recreation-related mobility variable based on data provided publicly by Google or Apple).

In estimating the relation, a geometric lag distribution is assumed. Moreover, also initial lags from UV and M  are allowed. If coefficients of P and M are
not statistically significant at 5 % level, they are left out and the estimation equation reduces to

(2) ∆logCt=α+(λ-1)logCt-1+δt+βlogUVt-n+ut, where ut is an error term and ∆logCt=logCt-logCt-1.

The parameters of (1) are obtained as μ=δ/(1-λ), θ=β/(1-λ) and ω=ϕ(1- λ).n and p are the number of days due to, e.g., reporting lags. The median lag 
from UV to C is obtained as m1=n+(log0.5/logλ). 

The long run relation of (1) exits only if λ<1, i.e. only if the coefficient of logCt-1 is significantly negative. Breusch-Godfrey test is used to test that residuals 
do not deviate from white noise. 

In estimating (2), differences in logUV where included as explanatory variables to reduce autocorrelation in the error term. In addition, UV deviation
from its 2005-2019 average was included to reduce autocorrelation. This variable may capture effects of an omitted variable. An omitted variable can be
the amount of UVC radiation. As the second slide in annex C notes, UVC’s germicidal effectiveness (virus destroying effectiveness) peak wavelength is 
260–265 nm. Normally UVC from sun does not reach, or reaches to a limited extent, earth’s surface. When daily UV deviates from its long-term average, 
possible causes for that include weather conditions (e.g. clouds) and thickness of the ozone layer. The thinner the ozone leyer is, the more UVC reaches
earth’s surface and vice versa. If, e.g., the ozone layer is unusually thin, or if it has a hole, UV’s germicidial effect is likely be unusually large.

Estimation equation



France

Dependent Variable: ∆logC ∆logC ∆logC ∆logC ∆logC
Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic

Constant 0,73290 13,16731 0,73488 13,36776 0,55801 6,72658 0,58905 5,34432 0,48741 2,65452
Trend 0,00060 7,42048 0,00053 6,29270 0,00029 2,46754 0,00037 2,70039 0,00037 2,49571
logC(-1) -0,04520 -8,48418 -0,04710 -8,86134 -0,02976 -3,68060 -0,04080 -6,07018 -0,03519 -3,01989
logUV(-21) -0,16623 -12,38027 -0,16160 -12,07227 -0,09581 -3,56828 -0,13354 -5,87462 -0,11507 -3,17656
∆(21)logUV -0,03428 -1,62681 -0,06423 -2,67979 -0,01857 -0,64872 -0,05720 -2,35071 -0,03496 -1,04891
logUVdev.LRAv.(-22)^ -0,17247 -2,51886 -0,06775 -0,88015 -0,11616 -1,49679 -0,11164 -1,36001

logStringency(-21) -0,06619 -2,81220
logTransit mobility(-21) Apple 0,01883 1,52490
logRecretion mob.(-21) Google 0,02315 1,47872

R-squared 0,48612 0,50119 0,51937 0,50668 0,25040
F-statistic 49,89979 42,19993 37,64158 35,77611 10,74507
Durbin-Watson stat 1,90173 1,96275 2,06519 1,99389 1,99653
LM(2)^^ 3,78586 1,99549 1,34634 1,81105 1,82666
LM / Prob. Chi-Square(2)^^ 0,15060 0,36870 0,51010 0,40430 0,40120

Sample (adjusted): 3/04/2020 10/05/2020 3/04/2020 10/05/2020 3/04/2020 10/05/2020 3/04/2020 10/05/2020 3/20/2020 10/05/2020
Included observation: 216 216 216 216 200

^logUVdev.LRAVv. = log(42 day moving sum of UV) - log(42 day moving sum of the daily average of UV in 2005-2019).
^^Breusch-Godfrey Serial Correlation LM 
Test.

Long-run elsticity of new Covid-19 cases
Underlying growth rate, % / day 1,32 1,12 0,97 0,89 1,04
Elasticity w.r.t. to UV -3,68 -3,43 -3,22 -3,27 -3,27
Median lag from UV 35,98 35,37 43,94 37,64 40,35



Germany

Dependent Variable: ∆logC ∆logC ∆logC ∆logC ∆logC
Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic

Constant 0,62183 15,97510 0,57627 14,62604 0,43224 6,36318 0,317849 3,222976 0,47310 4,73278
Trend 0,00032 6,18957 0,00025 4,90722 0,00015 2,31522 5,03E-05 0,574677 0,00015 2,41100
logC(-1) -0,03964 -11,01701 -0,03987 -11,44458 -0,02462 -3,60634 -0,035984 -9,75206 -0,04460 -7,01758
logUV(-28) -0,13863 -14,14570 -0,12475 -12,33416 -0,06401 -2,50821 -0,090367 -5,777362 -0,12652 -8,13236
∆(14)logUV(-14) -0,08132 -3,26431 -0,08376 -3,47194 -0,04537 -1,61686 -0,052087 -1,987193 -0,09253 -5,39608
logUVdev.LRAv.(-15)^ -0,20186 -3,95898 -0,13966 -2,50345 -0,032901 -0,423616 -0,05502 -0,96446

logStringency(-21) -0,07519 -2,58640
logTransit mobility(-21) Apple 0,066621 2,849898
logRecretion mob.(-21) Google 0,06936 2,83030

R-squared 0,68076 0,70217 0,71108 0,712916 0,60234
F-statistic 116,74980 0,70217 89,01098 89,8126 49,73249
Durbin-Watson stat 1,69209 1,82226 1,90096 1,882433 0,81324
LM(2)^^ 5,37017 1,29952 0,95157 0,733275 39,70008
LM / Prob. Chi-Square(2) ^^ 0,06820 0,52220 0,62140 0,6931 0,00000

Sample (adjusted): 2/29/2020 10/09/2020 2/29/2020 10/09/2020 2/29/2020 10/09/2020 2/29/2020 10/09/2020 3/20/2020 10/09/2020
Included observation: 224 224 224 224 204

^logUVdev.LRAVv. = log(42 day moving sum of UV) - log(42 day moving sum of the daily average of UV in 2005-2019).
^^ Breusch-Godfrey Serial Correlation LM Test.

Long-run elsticity of new Covid-19 cases
Underlying growth rate, % / day 0,79 0,63 0,61 0,14 0,34
Elasticity w.r.t. to UV -3,50 -3,13 -2,60 -2,51 -2,84
Median lag from UV 45,14 45,04 55,81 46,91 43,19



Finland

Dependent Variable: ∆logC ∆logC ∆logC ∆logC ∆logC
Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic

Constant 0,46958 9,90543 0,45984 9,69923 0,51685 9,19025 0,74438 4,50785 0,31312 1,08078
Trend 0,00034 5,06696 0,00034 4,98628 0,00051 4,41131 0,00057 3,89262 0,00029 1,91478
logC(-1) -0,03888 -5,64519 -0,03683 -5,31296 -0,05713 -4,42333 -0,05373 -4,60892 -0,02281 -1,23027
logUV(-21) -0,11218 -9,31406 -0,11010 -9,15667 -0,15661 -5,64646 -0,14725 -6,16802 -0,08587 -2,41044
∆logUVdev.LRAv.(-14)^ -0,06663 -1,87673 -0,07888 -2,19669 -0,05617 -1,56923 -0,05781 -1,89455

logStringency(-21) 0,08281 1,85835
logTransit mobility(-21) Apple -0,07897 -1,79801
logRecretion mob.(-21) Google 0,01933 0,24736

R-squared 0,31563 0,32697 0,33796 0,33727 0,20475
F-statistic 32,28324 25,38375 21,23607 21,17052 10,19545
Durbin-Watson stat 1,94795 1,99171 1,99802 1,98925 2,01510
LM(2)^^ 0,18718 0,26800 0,42601 0,42047 3,08229
LM / Prob. Chi-Square(2)^^ 0,91070 0,87460 0,80820 0,81040 0,21410

Sample (adjusted): 3/10/2020 10/09/2020 3/10/2020 10/09/2020 3/10/2020 10/09/2020 3/10/2020 10/09/2020 3/20/2020 10/09/2020
Included observation: 214 214 214 214 204

^∆logUVdev.LRAVv. = log(14 day moving sum of UV) - log(14 day moving sum of the daily average of UV in 2005-2019)-log(14 day moving sum of UV(-14)) - log(14 day moving sum of the 
daily average of UV in 2005-2019(-14)).
^^Breusch-Godfrey Serial Correlation LM Test.

Long-run elsticity of new Covid-19 cases
Underlying growth rate, % / day 0,88 0,91 0,90 1,06 1,25
Elasticity w.r.t. to UV -2,89 -2,99 -2,74 -2,74 -3,77
Median lag from UV 38,48 39,47 32,78 33,55 51,04



France

Dependent Variable: ∆logD ∆logD ∆logD ∆logD
Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic

Constant 0,88074 12,42599 0,51947 3,66475 0,98201 7,15759 0,52589 1,46907
Trend 0,00029 3,78791 0,00005 0,43386 0,00038 2,93210 0,00034 2,47258
logD(-1) -0,03379 -5,93820 -0,01914 -2,55150 -0,03619 -5,70884 -0,01766 -1,16743
logUV(-42) -0,18336 -11,84462 -0,07609 -1,91698 -0,20387 -7,18148 -0,11782 -1,74895
∆(21)logUV(-21) -0,13294 -6,41240 -0,06933 -2,32804 -0,13577 -6,46427 -0,07639 -1,83519

logStringency(-42) -0,07304 -2,92529
logTransit mobility(-42) Apple -0,01007 -0,86227
logRecretion mob.(-42) Google -0,00147 -0,07967

R-squared 0,45949 0,48188 0,46151 0,18620
F-statistic 42,29229 36,83018 33,93893 8,09954
Durbin-Watson stat 1,96930 2,09027 1,97142 2,04825
LM(2)^^ 2,09858 1,29558 2,06341 1,87850
LM / Prob. Chi-Square(2) ^^ 0,35020 0,52320 0,35640 0,39090

Sample (adjusted): 3/20/2020 10/09/2020 3/20/2020 10/09/2020 3/20/2020 10/09/2020 4/10/2020 10/09/2020
Included observation: 204 204 204 183

^^Breusch-Godfrey Serial Correlation LM Test.

Long-run elsticity of Covid-19 deaths
Underlying growth rate, % / day 0,86 0,25 1,05 1,95
Elasticity w.r.t. to UV -5,43 -3,98 -5,63 -6,67
Median lag from UV 62,17 77,87 60,80 80,91



Germany

Dependent Variable: ∆logD ∆logD ∆logD ∆logD

Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic

Constant 0,87671 15,75324 1,02303 7,89567 1,18866 8,04214 0,65935 3,24678

Trend 0,00013 1,35034 0,00016 1,66446 0,00045 2,65045 0,00035 3,64426

logD(-1) -0,05648 -9,45709 -0,06733 -6,39431 -0,06113 -9,77376 -0,02717 -2,56737

logUV(-44) -0,17153 -11,76544 -0,21627 -5,59808 -0,22650 -8,04678 -0,13798 -4,36275

∆(7)logUV(-23) -0,10320 -2,20143 -0,10058 -2,14633 -0,07190 -1,48576 -0,07047 -2,18239

logStringency(-42) 0,04171 1,25015

logTransit mobility(-42) Apple -0,05938 -2,27440

logRecretion mob.(-42) Google -0,02367 -0,78111

R-squared 0,59547 0,59864 0,60577 0,29757

F-statistic 73,23298 59,06467 60,84949 14,99639

Durbin-Watson stat 1,72775 1,71443 1,76045 1,63353

LM(2)^^ 1,45088 1,15653 1,52273 7,94453

LM / Prob. Chi-Square(2) ^^ 0,48410 0,56090 0,46700 0,01880

Sample (adjusted): 3/20/2020 10/09/2020 3/20/2020 10/09/2020 3/20/2020 10/09/2020 4/10/2020 10/09/2020

Included observation: 204 204 204 183

^^Breusch-Godfrey Serial Correlation LM Test.

Long-run elsticity of Covid-19 deaths

Underlying growth rate, % / day 0,22 0,24 0,73 1,30

Elasticity w.r.t. to UV -3,04 -3,21 -3,70 -5,08

Median lag from UV 55,92 53,94 54,99 69,16



Finland

Dependent Variable: ∆logD ∆logD ∆logD ∆logD ∆logD
Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic

Constant 0,48201 4,35335 0,55041 4,90274 0,31880 2,09888 -0,18583 -0,66436 0,21083 0,47987
Trend -0,00005 -0,25717 -0,00002 -0,12482 -0,00026 -1,23490 -0,00059 -2,18903 -0,00047 -2,03388
logD(-1) -0,03888 -3,13067 -0,04276 -3,46903 -0,02155 -1,39452 -0,03306 -2,63373 -0,06112 -2,57719
logUV(-28) -0,10105 -3,43397 -0,11672 -3,94045 0,00132 0,02189 -0,00906 -0,19068 -0,11089 -1,56399
∆logUVdev.LRAv.(-12)^ -0,20377 -2,56759 -0,20559 -2,61874 -0,25158 -3,16050 -0,32500 -3,19849

logStringency(-42) -0,16211 -2,23488
logTransit mobility(-42) Apple 0,19220 2,86328
logRecretion mob.(-42) Google 0,21744 2,35042

R-squared 0,12054 0,15145 0,17436 0,18841 0,11998
F-statistic 8,31493 8,07596 7,60229 8,35739 4,41744
Durbin-Watson stat 2,03303 2,07388 2,16206 2,17841 2,16851
LM(2)^^ 0,81932 0,57958 1,30798 1,65882 1,25497
LM / Prob. Chi-Square(2)^^ 0,66390 0,74840 0,52000 0,43630 0,53390

Sample (adjusted): 3/23/2020 10/09/2020 3/23/2020 10/09/2020 3/23/2020 10/09/2020 3/23/2020 10/09/2020 3/23/2020 10/09/2020
Included observation: 186 186 186 186 186

^∆logUVdev.LRAVv. = log(14 day moving sum of UV) - log(14 day moving sum of the daily average of UV in 2005-2019)-log(14 day moving sum of UV(-14)) - log(14 day moving sum of the 
daily average of UV in 2005-2019(-14)).
^^Breusch-Godfrey Serial Correlation LM Test.

Long-run elsticity of Covid-19 deaths
Underlying growth rate, % / day -0,12 -0,05 -1,22 -1,78 -0,78
Elasticity w.r.t. to UV -2,60 -2,73 0,06 -0,27 -1,81
Median lag from UV 45,48 43,86 59,82 48,62 38,99



Including Covid-19 policy stringency indicator (Oxford) or other mobility variables in the Sweden-Finland new Covid-19 cases equation

Sweden minus Finland

Dependent Variable: ∆logC ∆logC ∆logC ∆logC
Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic

Constant 0,01459 1,62911 0,00791 0,86840 0,00674 0,76601 0,00333 0,35219
logC(-1) -0,02848 -3,44715 -0,02562 -2,68632 -0,02277 -2,85239 -0,01889 -2,24882
logUV(-21) -0,20344 -2,72864 -0,10138 -1,14393 -0,08940 -1,00803 -0,11835 -1,27858
logTransit mobility(-42) Apple 0,27727 4,99986 0,14342 0,81423 0,19562 2,15306 0,23946 4,35009

logRecreation mob.(-42) Google 0,14326 0,72263
logWork mob.(-42) Google 0,11846 0,91002
logStringency(-42) -0,03335 -1,22096

R-squared 0,12353 0,15234 0,15380 0,16030
F-statistic 9,91279 7,95269 8,04266 7,97027
Durbin-Watson stat 1,98515 1,87043 1,87485 1,88734
LM(2)^ 0,06154 3,65373 3,67055 2,36416
LM / Prob. Chi-Square(2)^ 0,96970 0,16090 0,15960 0,30660

Sample (adjusted):
3/08/2020 
10/08/2020 4/10/2020 10/08/2020 4/10/2020 10/08/2020 4/20/2020 10/08/2020

Included observation: 215 182 182 172

^Breusch-Godfrey Serial Correlation LM Test.

Long-run elasticity of new Covid-19 cases
Transit Mobility (Apple) 9,7 5,6 8,6 12,7
Recreation Mobility (Google) 5,6
Work Mobility (Google) 5,2
Stringency -1,8
Median lag, days 66 69 72 78



Sweden minus Finland

Dependent Variable: ∆logD ∆logD ∆logD ∆logD
Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic

Constant 0,04184 1,49421 0,03810 1,21132 0,04916 1,55706 0,04468 1,35900
logD(-1) -0,08404 -3,40532 -0,06023 -1,90776 -0,08988 -3,16322 -0,08521 -2,92709
logUV(-21) 0,53280 2,89641 0,33580 1,39404 0,51351 2,42600 0,45672 1,92650
logTransit mobility(-63) Apple 0,83789 4,43932 1,40873 3,48733 0,65835 2,36080 0,81220 3,55855

logRecretion mob.(-63) Google -0,84490 -1,68532
logWork mob.(-63) Google 0,34518 0,95206
logStringency(-63) -0,03332 -0,50390

R-squared 0,12543 0,14739 0,13375 0,12926
F-statistic 7,31450 5,18613 4,63219 4,08236
Durbin-Watson stat 2,26096 2,42841 2,31867 2,33812
LM(2)^ 0,68614 3,25278 0,77689 0,72242
LM / Prob. Chi-Square(2)^ 0,70960 0,19660 0,67810 0,69680

Sample (adjusted):
3/29/2020 

10/05/2020 5/01/2020 10/05/2020 5/01/2020 10/05/2020 5/11/2020 10/05/2020
Included observation: 157 125 125 115

^Breusch-Godfrey Serial Correlation LM Test.

Long-run elasticity of new Covid-19 deaths
Transit Mobility (Apple) 10,0 23,4 7,3 9,5
Recreation Mobility (Google) -14,0
Work Mobility (Google) 3,8
Stringency -0,4
Median lag, days 71 74 70 71

Including Covid-19 policy stringency indicator (Oxford) or other mobility variables in the Sweden-Finland new Covid-19 deaths equation
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