Princeton Webinar

Macroeconomics, Carbon Pricing, and Climate Policy

James Stock Harvard

Markus Brunnermeier Princeton

21. January 2021

markus academy Hosted from **PRINCETON** For **EVERYONE, WORLDWIDE**

Other Webinars on Climate Change

Bill Nordhaus

... next week

Esteban Rossi-Hansberg

- In and geography, migration, ...
- Carbon taxes "flatten the curve"
 - Using less in near future, lowers costs for far future

Richard Zeckhauser

- Mitigation
- Adaption, and
- Amelioration (geoengineering, ...)

Malthusian vs. Innovation Approach

- Malthusian approach
 - Supply shock Reduces GDP/employment – inflationary
 - Value of currently free goods \rightarrow Increases GDP (measured) (e.g. bottled water)
 - COVID lockdowns ... largest decline, but not more than a bump

Cali et al. Nov. 2020 Brookings paper

GDP measurement

Malthusian vs. Innovation Approach

- Malthusian approach
 - Supply shock Reduces GDP/employment – inflationary
 - Value of currently free goods \rightarrow Increases GDP (measured) (e.g. bottled water)
 - COVID lockdowns ... largest decline, but not more than a bump
 - Unpopular esp. reduction in tourism
- Innovation approach
 - Increases investment
 - Resources are cheaper later Reduces GDP

→ Increases GDP/employment

Cali et al. Nov. 2020 Brookings paper

GDP measurement

COVID, QWERTY: Restarting on right path

Path: Planning certainty

- Carbon tax path
- Pollution permits

CO2 price certainty

Pollution level certainty

- For free vs. auction off
- Short-term permits vs. central bank approach (Depla)
- To keep CO2 price within range

Poll Questions

- Over 10-20 years, effect of a \$40 carbon tax on the level of GDP?
 - Big reduction (-5%+)
 - Small reduction (-1% to -5%)
 - Negligible effect (+/- 1%)
 - Small increase (1% to 5%)
 - Big increase (>5%+)
- In the level of aggregate employment?
 - Big reduction (-5%+)
 - Small reduction (-1% to -5%)
 - Negligible effect (+/- 1%)
 - Small increase (1% to 5%)
 - Big increase (>5%+)
- What is the single most effective US climate policy?
 - Technology policies
 - Direct gov. investment (Green Infrastructure Bank, etc.)
 - Carbon tax starting at \$40/ton, increasing 5%/yr
 - Supply-side policies (ban ...)

6

January 21, 2021

BENDHEIM CENTER FOR FINANCE

Macroeconomics, Carbon Pricing, and Climate Policy

James H. Stock, Economics Department and Harvard Kennedy School, Harvard University

US Climate Policy Earthquake

All of a sudden!

- EOs on Paris, deregulatory reversal, Keystone XL, SCC
- A lot more on the way including legislation

COV

The Administration Priorities

US Climate Policy Earthquake

All of a sudden!

- EOs on Paris, deregulatory reversal, Keystone XL, SCC
- A lot more on the way including legislation

Main domestic climate policy bins:

- Price on carbon
- Transportation sector & EVs
- Green RD&D policy
- Supply side policies
 - financial disclosures through keep-it-in-the-ground
- USG regulatory weeds

BRIEFING ROOM

Executive Order on Protecting Public Health and the Environment and Restoring Science to Tackle the Climate Crisis

JANUARY 20, 2021 • PRESIDENTIAL ACTIONS

JANUARY 20, 2021 • STATEMENTS AND RELEASES

US Climate Policy Earthquake

All of a sudden!

- EOs on Paris, deregulatory reversal, Keystone XL, SCC
- A lot more on the way including legislation

Main domestic climate policy bins:

- Price on carbon
- Transportation sector & EVs
- Green RD&D policy
- Supply side policies
 - financial disclosures through keep-it-in-the-ground
- USG regulatory weeds

This talk:

- Some energy transition background
- Carbon tax: macro effect, effect on emissions (with Gib Metcalf 2020)
- Power sector alternatives (with Daniel Stuart 2021)
- Return to main list

BRIEFING ROOM

Executive Order on Protecting Public Health and the Environment and Restoring Science to Tackle the Climate Crisis

JANUARY 20, 2021 • PRESIDENTIAL ACTIONS

Paris Climate Agreement

JANUARY 20, 2021 • STATEMENTS AND RELEASES

US CO2 emissions from energy consumption

CO2 emissions by fuel type

Component	Actual minus 1990-2005 trend (log points)
CO2 intensity of energy (CO2/Energy)	-0.158
Economy-wide energy efficiency (Energy/GDP)	0.038
GDP per capita	-0.161
Population	-0.060
Total: CO2 emissions	-0.348

Source: U.S. Energy Information Administration

Background: Scope of Challenge (2)

US electricity generation by source

Decomposition of decline in coal consumption, 2008-2016

Source	Contribution (mst)
Relative prices, coal/gas	-397
Clean Air Act regulations	-28
RPS	-9
Electricity demand	-32
Other	+33
Total change, 2008-2016	-433

Source: Coglianese, Gerarden, and Stock (2020)

Background: Scope of Challenge (2)

US electricity generation by source

Decomposition of decline in coal consumption, 2008-2016

Source	Contribution (mst)
Relative prices, coal/gas	-397
Clean Air Act regulations	-28
RPS	-9
Electricity demand	-32
Other	+33
Total change, 2008-2016	-433

Net zero power sector by 2035 means...

...per year for 15 years

Source: Coglianese, Gerarden, and Stock (2020)

A number of carbon tax bills were introduced in the previous Congress, but there are legitimate concerns...

- Jobs and economy
- Regressive
- Impacted sectors (concentrated negatively affected interests)
- Won't produce the necessary emissions reductions

Figure 1: Carbon Tax Rates for Federal Carbon Tax Proposals (2020 dollars/ton)

A number of carbon tax bills were introduced in the previous Congress, but there are legitimate concerns...

- Jobs and economy (this paper)
- Regressive
- Impacted sectors (concentrated negatively affected interests)
- Won't produce the necessary emissions reductions

Statement by President Trump on ts) the Paris Climate Accord

REMARKS

ENERGY & ENVIRONMENT Issued on: June 1, 2017

_____ * * * _____

Compliance with the terms of the Paris Accord and the onerous energy restrictions it has placed on the United States could cost America as much as 2.7 million lost jobs by 2025 according to the National Economic Research Associates....

According to this same study, by 2040, compliance with the commitments put into place by the previous administration would cut production for the following sectors: paper down 12 percent; cement down 23 percent; iron and steel down 38 percent; coal — and I happen to love the coal miners — down 86 percent; natural gas down 31 percent. The cost to the economy at this time would be close to \$3 trillion in lost GDP and 6.5 million industrial jobs, while households would have \$7,000 less income and, in many cases, much worse than that.

A number of carbon tax bills were introduced in the previous Congress, but there are legitimate concerns...

- Jobs and economy
- Regressive
- Impacted sectors (concentrated negatively affected interests)
- Won't produce the necessary emissions reductions

A number of carbon tax bills were introduced in the previous Congress, but there are legitimate concerns...

- Jobs and economy
- Regressive
- Impacted sectors (concentrated negatively affected interests)
- Won't produce the necessary emissions reductions

Aggregate coal mine average employees, Annual

Data source: U.S. Energy Information Administration

A number of carbon tax bills were introduced in the previous Congress, but there are legitimate concerns...

- Jobs and economy
- Regressive
- Impacted sectors (concentrated negatively affected interests)
- Won't produce the necessary emissions reductions

Impacts of a carbon tax: theory

- 1. Computable general equilibrium models
 - a) GDP effect (e.g. Goulder and Hafstead, *Confronting the Climate Challenge* (2018); Jorgenson (2013), etc.; <u>RFF Carbon Pricing</u> <u>Calculator</u>
- Parallel shift down
- Importance of revenue recycling method
- Example: Tax of \$40/ton @5%/year: GDP loss in 2035 = -1.5% (tax & dividend)

-1.2% (payroll tax cut)

Source: RFF Carbon Pricing Calculator at https://www.rff.org/cpc/

- 1. Computable general equilibrium models
 - a) GDP effect (e.g. Goulder and Hafstead, *Confronting the Climate Challenge* (2018); Jorgenson (2013), etc.
 - b) Employment effect: Hafstead and Williams, NBER EEPE, (2019)

Source: Hafstead and Williams (2019, Fig. 1)

Data set:

- EU + Iceland + Norway + Switzerland (n = 31) all countries in the European emissions trading system
 - Of which, 15 also have a carbon tax, almost entirely on emissions not covered by the ETS
- Annual, 1985 2018
 - EU ETS started in 2005 (power sector and certain energy-intensive industries) (subsequently expanded to aviation)

Sources:

- Carbon prices: World Bank (new carbon price data)
 - Carbon tax rates are real local currency, scaled to 2018 USD using 2018 PPP
 - Some countries have multiple tax rates, WB data set has highest and lowest rate and fuels to which it applies; we used the highest rate (typically this is the rate on gasoline & diesel)
 - Weighted for coverage of tax
 - Sensitivity check with new data from Dolphin et al (2020)
- GDP, population: World Bank except
 - Norway we use mainland GDP
 - Ireland we use Ireland official statistics
- Employment: Eurostat
- Fuel prices and fuel taxes: IEA
- Emissions: Eurostat; Dolphin et al (2019)
 - emissions in road transport, commercial & institutional, and household sectors
 - Alternatively, emissions from fuel consumption

A fair number of studies examine carbon tax effect on emissions: partial list

Lin and Li (2011) – Scandinavia + Netherlands Rivers and Schaufele (2012) – BC transportation emissions Murray and Rivers (2015) – review of older literature on BC carbon tax Haites et. al. (2018) – carbon pricing generally, effectiveness and political economy Dolphin, Pollitt, and Newberry (2019) – political economy of carbon tax rates (not effectiveness) Pretis (2019) – BC Andersson (2019) – Sweden (carbon tax + VAT on fuel) Runst and Thonipara (2019) – Swedish residential sector Hajek et al (2019), energy sector emissions (SWE, FIN, DNK, IRE, SLO) He at al (2019) OECD environmental taxes Fauceglia et al. (2019) – Swiss industry Abrell et al. (2019) – UK Carbon Price Support on top of EU-ETS, plant-level **Rafaty, Dolphin, Pretis (2020) - OECD**

Fewer study the effect on GDP and employment

Elgie and McClay (2013) – BC income Yamazaki (2017), Yip (2018) – BC employment Metcalf (2015, 2019) – BC (2015) and EU (2019) Bernard et. al. (2018) – BC carbon tax and provincial income (VAR on with-tax fuel price) Olale et. al. (2019) – BC carbon tax and net farm income Mundaca (2017) – eliminating fuel tax subsidies in Middle East/North Africa

Carbon tax history for the 15 countries with carbon taxes

Data source: World Bank (carbon price data in press)

Carbon tax rates are real local currency, scaled to 2018 USD using 2018 PPP

GDP growth: World Bank (except as noted below)

Real rate in local currency, normalized to 2018 USD

Real GDP per capita, growth (annual %)

Before and after imposition of carbon tax

Deviated from country's pre-tax mean. Horizontal lines are pre/post means. Dots and bars denote mean and 90% confidence interval by year.

Total employment, growth (annual %)

Deviated from country's pre-tax mean. Horizontal lines are pre/post means. Dots and bars denote mean and 90% confidence interval by year.

Data description

CO2 emissions from fuel combustion per capita (log)

Before and after imposition of carbon tax

Deviated from country's pre-tax mean. Horizontal lines are pre/post means. Dots and bars denote mean and 90% confidence interval by year.

Methods and identifying assumptions

- Estimand: cumulative dynamic causal effect of change in tax rate on real variables
- Two methods (LP, SVAR), one exogeneity condition (identifying assumptions)

Local projections (panel)

Exogeneity condition:

 $\ln(GDP_{t+h} / GDP_{t-1}) = \Theta_{yx,h}\tau_t + \beta(L)\tau_{t-1} + \delta(L)\Delta\ln(GDP_{t-1}) + \gamma(L)W_t + u_t$ $E(u_t | \tau_t, \tau_{t-1}, ..., \Delta\ln(GDP_{t-1}), W_t, W_{t-1}, ...)$ $= E(u_t | \tau_{t-1}, \tau_{t-2}, ..., \Delta\ln(GDP_{t-1}), W_t, W_{t-1}, ...)$

Note: $\Theta_{yx,h}$ *is h-period ahead cumulative impulse response function in VAR jargon*

+ Country fixed effects (rich nations adopt CT)

+ year FE (EU-wide confounders, financial crisis, etc.)

Identification comes from the time series variation: think "SVAR", not "event study"

Odds & ends:

- Also estimate panel VAR
- Tax rate is interaction with coverage share
- Results calibrated to \$40 tax covering 30% of emissions
- 4 lags of control variables/SVAR(4)
- Test & fail to reject parallel paths assumption (i.e., no long-run growth rate effect) *results today impose parallel paths*

Results: GDP growth

Results: GDP growth

²⁴

Results: GDP log level

Sample: **EU+**

counterfactual

Cumulative IRF for \$40 carbon tax increase: LP

Carbon tax rate (real, 2018 USD) wtd by coverage share Dep. vble: Δlrgdp; Controls = YE; Sample = EU+

25

27

Results: Emissions log level

Cumulative IRF for \$40 carbon tax increase: LP Sample: **EU+** Carbon tax rate (real, 2018 USD) wtd by coverage share Dep. vble: Δlemission_ctsectors; Controls = YE; Sample = EU+ Method: LP 20 Restricted **Cumulative IRF** S 0 **Emissions from sectors** points 5 1(exposed to the CT S This cumulative IRF is the Percentage estimated effect of the tax increase 0 on the *level* of log(emissions) പ്പ **Back of envelope:** 0 \$40 CT = \$0.36/gal \approx 7% increase ഹ $\times -0.37 \approx -3\%$ -Elasticity source: Coglianese, Davis, ٠ 20 Kilian, Stock (2017) Similar results in Rafaty et al (2020) 2 3 5 0 6 Years after implementation

67% and 95% confidence bands. Includes 4 lags of all regressors.

67% and 95% confidence bands. Includes 4 lags of all regressors.

IRF for \$40 carbon tax increase: LP

Carbon tax rate (real, 2018 USD) wtd by coverage share Dep. vble: Δlemptot; Controls = YE; Sample = EU+RR0

Summary

Back to original policy problem: Expect effect of CT in US?

The EU CT covers (mainly) the transportation sector – the power sector is covered by the EU ETS. In the US, it would cover the power sector too.

EIA *Annual Energy Outlook* 2020 Projections of CO2 Emissions: Reference Case and \$25 and \$35/ton carbon tax side cases

Key features (\$35/ton case):

- Power sector emissions are reduced by 67% by 2035
- Total emissions fall by 21% by 2035
- 90% of emissions reductions come from the power sector
- EIA's gasoline elasticities are too low, but even with -0.37, a \$35/ton CT yields an emissions reduction of only 5% in the transportation sector ≈ 1.3% reduction in total emissions
 - This could change significantly when EVs achieve price parity

Source: EIA simulations of NEMS model

What about other power sector policies?

Legislative

- 1) Carbon tax, economy-wide
- 2) Carbon tax, power sector only
- 3) Clean electricity standard (CES)
 - Binary (clean/not clean)
 - Proportional to CO2 emissions
- 4) Extend investment & production tax credits

What about other power sector policies?

Legislative

- 1) Carbon tax, economy-wide
- 2) Carbon tax, power sector only
- 3) Clean electricity standard (CES)
 - Binary (clean/not clean)
 - Proportional to CO2 emissions
- 4) Extend investment & production tax credits

Regulatory

5) Clean Air Act regulation

6) End federal coal program

United States Court of Appeals

Argued October 8, 2020

Decided January 19, 2021

No. 19-1140

American Lung Association and American Public Health Association, Petitioners

v.

ENVIRONMENTAL PROTECTION AGENCY AND ANDREW WHEELER, ADMINISTRATOR, RESPONDENTS

The question in this case is whether the Environmental Protection Agency (EPA) acted lawfully in adopting the 2019 Affordable Clean Energy Rule (ACE Rule) ... as a means of regulating power plants' emissions of greenhouse gases. It did not. Although the EPA has the legal authority to adopt rules regulating those emissions, the central operative terms of the ACE Rule and the repeal of its predecessor rule, the Clean Power Plan hinged on a fundamental misconstruction of Section 7411(d) of the Clean Air Act. In addition, the ACE Rule's amendment of the regulatory framework to slow the process for reduction of emissions is arbitrary and capricious. For those reasons, the ACE Rule is vacated, and the record is remanded to the EPA for further proceedings consistent with this opinion.

p. 16-17

What about other power sector policies?

Legislative

- 1) Carbon tax, economy-wide
- 2) Carbon tax, power sector only
- 3) Clean electricity standard (CES)
 - Binary (clean/not clean)
 - Proportional to CO2 emissions
- 4) Extend investment & production tax credits

Regulatory

5) Clean Air Act regulation

6) End federal coal program

Rely on stronger state policies

- 7) Strengthen state RPS's (e.g., New York state)
- 8) Strengthen state/regional emissions trading systems (CA AB32, RGGI)

United States Court of Appeals

FOR THE DISTRICT OF COLUMBIA CIRCUIT

Argued October 8, 2020

Decided January 19, 2021

No. 19-1140

American Lung Association and American Public Health Association, Petitioners

v.

ENVIRONMENTAL PROTECTION AGENCY AND ANDREW WHEELER, ADMINISTRATOR, RESPONDENTS

The question in this case is whether the Environmental Protection Agency (EPA) acted lawfully in adopting the 2019 Affordable Clean Energy Rule (ACE Rule) ... as a means of regulating power plants' emissions of greenhouse gases. It did not. Although the EPA has the legal authority to adopt rules regulating those emissions, the central operative terms of the ACE Rule and the repeal of its predecessor rule, the Clean Power Plan hinged on a fundamental misconstruction of Section 7411(d) of the Clean Air Act. In addition, the ACE Rule's amendment of the regulatory framework to slow the process for reduction of emissions is arbitrary and capricious. For those reasons, the ACE Rule is vacated, and the record is remanded to the EPA for further proceedings consistent with this opinion.

p. 16-17

Effects of selected power sector policies

Policy	Cumulative abatement 2020-2036 (mmt)	Average cost per ton CO2 abated
Federal \$40 carbon tax	13,400	\$24/ton
Federal 80% CES (binary)	10,200	\$43/ton
Federal ITC, PTC extension	2,800	\$48/ton
State 80% CES	5	\$395/ton

Source: Daniel Stuart (2021), modified NREL ReEDS model

Notes:

- For comparison: Obama era SCC = \$51 (\$125 at 2% discount rate)
- \$40 carbon tax increases @ 5%/yr. National CES ramps from 24% in 2020 to 80% in 2035.
- State CES policy applies to CA, CO, MA, NM, NY, WA, and VA
- State \$40 carbon price applies to CA (AB32) and CT, DE, ME, MD, MA, NH, NJ, NY, RI, and VA (RGGI)

Understanding these results:

- The carbon tax increases the marginal cost of FF electricity in proportion to CO2 emissions
- A proportional CES increases the marginal cost in proportion to CO2 and subsidizes clean sources
- The PTC subsidizes onshore wind generation (\$24/MWh) but does not affect the marginal cost of FF generation
- The ITC subsidizes the capital cost of solar & offshore wind but does not affect marginal costs

Carbon tax – can't go it alone

A number of carbon tax bills were introduced in the previous Congress, but there are legitimate concerns...

- Jobs and economy
- Regressive
- Impacted sectors (concentrated negatively affected interests)
- Won't produce the necessary emissions reductions
 - What about a higher tax rate?
 - IPCC SR 1.5: \$75-\$125 @ 5% real = \$325-\$540 in 2050 (other scenarios in thousands)
 - Main problem is that there are multiple externalities:
 - Carbon price externality
 - R&D
 - Network externalities
 - .
 - Multiple externalities => multiple tools

Main domestic climate policy bins:

- Price on carbon
- Transportation sector & EVs
- Green RD&D policy
- Supply side policies
 - financial disclosures through keep-it-in-the-ground
- USG regulatory weeds

Carbon tax – can't go it alone

Main domestic climate policy bins:

- Price on carbon
- Transportation sector & EVs
- Green RD&D policy
- Supply side policies
 - financial disclosures through keep-it-in-the-ground
- USG regulatory weeds

References: USDOI (2017); Gerarden, Reeder, & Stock (2019)

Carbon tax – can't go it alone

Main domestic climate policy bins:

• Price on carbon

.

...

- Transportation sector & EVs
- Green RD&D policy
- Supply side policies
 - financial disclosures through keep-it-in-the-ground
- USG regulatory weeds
 - SCC & OMB Circular A-4
 - FERC transmission siting authority
 - Command & control regulation for methane

Transfer or and a second a sec

Additional Slides

Carbon taxes in 2018

Source: World Bank

https://carbonpricingdashboard.worldbank.org/

Country	Year of Adoption	Rate in 2018 (USD)	Coverage (2019)
Finland	1990	\$70.65	0.36
Poland	1990	0.16	0.04
Norway	1991	49.30	0.62
Sweden	1991	128.91	0.40
Denmark	1992	24.92	0.40
Slovenia	1996	29.74	0.24
Estonia	2000	3.65	0.03
Latvia	2004	9.01	0.15
Switzerland	2008	80.70	0.33
Ireland	2010	24.92	0.49
Iceland	2010	25.88	0.29
UK	2013	25.71	0.23
Spain	2014	30.87	0.03
France	2014	57.57	0.35
Portugal	2015	11.54	0.29

42

Results: Tests of parallel paths restriction

t-statistics testing long-run effect
of change carbon tax level on the
growth rate of y = 0
(p-values in second line)

- For SVAR, this is implied longrun IRF
- For LP, this is 8-year effect
- Fail to reject "parallel paths" restriction
- Results shown today impose the "parallel paths" restriction

	GDP	Employment	Emissions	
LP	0.33	-0.63	-2.09	
	0.75	0.53	0.04	
SVAR	1.34	0.62	-1.26	
	0.18	0.53	0.21	
Revenue Recycling Countries				
LP	0.05	-0.72	-0.95	
	0.96	0.47	0.34	
SVAR	1.39	0.17	-0.40	
	0.16	0.87	0.69	
Large Carbon Tax Countries				
LP	-0.41	0.14	-0.53	
	0.69	0.89	0.60	
SVAR	1.00	1.23	-0.34	
	0.32	0.22	0.73	
Scandinavian Countries				
LP	-0.44	0.80	0.19	
	0.66	0.42	0.85	
SVAR	0.95	1.04	0.16	
	0.34	0.30	0.87	

- 1. Are the results driven by:
 - Scandinavia?
 - No: results for SCA-only, or EUxSCA, are similar to overall results, just noisier
 - Countries that have low taxes?
 - No: very similar results if you use only countries with tax of at least \$10/ton share-weighted (\$40/ton x 30% coverage = \$12/ton shareweighted)
 - Carbon tax data decisions?
 - No. Essentially no difference in results if we use the Dolphin et al.
 (2019) carbon tax rates, see the paper
- 2. Are the positive GDP and employment results a consequence of how the country uses the revenue?

45

Dep vble: **GDP growth**

Method: LP Restricted

<u>Revenue recycling countries</u> Denmark, Sweden, Norway, Finland, Switzerland, Portugal

IRF for \$40 carbon tax increase: LP

Carbon tax rate (real, 2018 USD) wtd by coverage share Dep. vble: Δlrgdp; Controls = YE; Sample = EU+RR0

Results: GDP growth

Carbon tax rate (real, 2018 USD) wtd by coverage share Dep. vble: Δlrgdp; Controls = YE; Sample = EU+ Sample: **EU+** 4 Method: Linear Projection Unrestricted З points Percentage p 2 -1 0 2 ကု 4 0 2 3 5 Years after implementation

67% and 95% confidence bands. Includes 4 lags of all regressors.

IRF for \$40 carbon tax increase: LP

6

Results: GDP growth

Sample: **EU+**

This cumulative IRF is the estimated effect of the tax increase on the *level* of log(emissions), imposing the "parallel path" assumption

Emissions series:

Emissions in sectors exposed to the carbon tax

Cumulative IRF for \$40 carbon tax increase: SV4

Carbon tax rate (real, 2018 USD) wtd by coverage share Dep. vble: Δlemission_ctsectors; Controls = YE; Sample = EU+

More details on carbon pricing schemes internationally

Summary map of regional, national and subnational carbon pricing initiatives

ETS implemented or scheduled for implementation
 ETS or carbon tax under consideration
 ETS implemented or scheduled, tax under consideration

Carbon tax implemented or scheduled for implementati...
 ETS and carbon tax implemented or scheduled
 Carbon tax implemented or scheduled, ETS under consi...

Data odds and ends

Ireland: Replace World Bank GDP data with adjusted Irish statistical agency data

Norway:

Focus on Scandinavia

Data source: World Bank (carbon price data in press)

Country	Year of Adoption	Rate in 2018 (USD)	Coverage (2019)
Finland	1990	\$70.65	0.36
Poland	1990	0.16	0.04
Norway	1991	49.30	0.62
Sweden	1991	128.91	0.40
Denmark	1992	24.92	0.40
Slovenia	1996	29.74	0.24
Estonia	2000	3.65	0.03
Latvia	2004	9.01	0.15
Switzerland	2008	80.70	0.33
Ireland	2010	24.92	0.49
Iceland	2010	25.88	0.29
UK	2013	25.71	0.23
Spain	2014	30.87	0.03
France	2014	57.57	0.35
Portugal	2015	11.54	0.29

VAR IRF: Denmark

VAR(2) IRF for \$40 carbon tax: Denmark Tax variable: Carbon tax rate (real, LCU, 2018 USD @ PPP) Dep. vble: dlrgdp; Controls = none

VAR IRF: Denmark

VAR(2) IRF for \$40 carbon tax: Denmark

Tax variable: Carbon tax rate (real, LCU, 2018 USD @ PPP) Dep. vble: dlemptot; Controls = none

VAR IRF: Finland

VAR(2) IRF for \$40 carbon tax: Finland Tax variable: Carbon tax rate (real, LCU, 2018 USD @ PPP) Dep. vble: dlrgdp; Controls = none

VAR IRF: Finland

VAR(2) IRF for \$40 carbon tax: Finland Tax variable: Carbon tax rate (real, LCU, 2018 USD @ PPP) Dep. vble: dlemptot; Controls = none

ω \sim ဖ 2 4 points 2 3 4 ercentage | -3-2-1 0 1 J မှ ဖု 5 ထု 5 0 6 Years after implementation 67% and 95% confidence bands. No. annual obs = 32

VAR IRF: Norway

VAR(2) IRF for \$40 carbon tax: Norway Tax variable: Carbon tax rate (real, LCU, 2018 USD @ PPP) Dep. vble: dlrgdp; Controls = none

VAR IRF: Norway

VAR(2) IRF for \$40 carbon tax: Norway

Tax variable: Carbon tax rate (real, LCU, 2018 USD @ PPP) Dep. vble: dlemptot; Controls = none

VAR IRF: Sweden

VAR(2) IRF for \$40 carbon tax: Sweden

Tax variable: Carbon tax rate (real, LCU, 2018 USD @ PPP) Dep. vble: dlrgdp; Controls = none

VAR IRF: Sweden

VAR(2) IRF for \$40 carbon tax: Sweden

Tax variable: Carbon tax rate (real, LCU, 2018 USD @ PPP) Dep. vble: dlemptot; Controls = none

Any tax anticipation effect?

Augment distributed lag regressions with 1 or 2 *leads* (*t*-statistics in parentheses)

Dependent variable (growth rate)	Tax variable	Cumulative lead effect (@ \$40 tax) 1 lead	Cumulative lead effect (@ \$40 tax) 2 leads
GDP	Real tax rate	-0.40 (1.28)	-0.10 (1.33)
Total employment	Real tax rate	-0.89 (1.01)	-0.84 (1.04)