What if Germany is cut off from Russian oil and gas?

David Baqee
Bena Moll

UCLA LSE

07. April 2022
Markus Brunnermeier
Bachman, Baqae, Bayer, Kuhn, Löschel, Moll, Peichl, Pittel, Schularick (2022)

<table>
<thead>
<tr>
<th>market</th>
<th>Substitute with</th>
<th>Russia’s escape</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coal</td>
<td>world</td>
<td>Other supplier</td>
</tr>
<tr>
<td>Oil</td>
<td>world</td>
<td>Different energy (hydrogen)</td>
</tr>
<tr>
<td>Natural gas</td>
<td>local</td>
<td></td>
</tr>
</tbody>
</table>

Low cost \Rightarrow low effectiveness vs. High
Timing: Blitz sanctions vs. sustained sanctions

- “Blitz/Cold turkey sanctions”
 - More effective as Russia can’t adjust
 - Quick military withdrawal if one hits hard (?)
 - More costly for the West as it can’t adjust
 - Less resilience? Might not be sustained (during winter)

- Sustained sanctions
 - Build up reserves to sustain sanctions
 - What is Trump is re-elected in 2024 and has not interest in NATO?
 - Chechen War took many years
2 Types of studies

- Macro approach
 - Substitutability across sectors
 - estimate

- Detailed approach
 - Gas pipeline/transport matters
 - Gas pressure matters

- Unintended consequences
 - Ukrainian diesel comes from Poland, which relies on Russian oil

Next week with Elina Ribakova
Substitutability

substitute

2 isoquants

gas
Substitutability

Lower substitutability

2 isoquants
Substitutability

substitute

gas

Lowest substitutability (Leontief)
Locally high substitutability (estimated)
Different for large shocks
No resilience in substitutability
OPEC 1973 shock

- 2022: Russia’s world oil supply 13%
- 1973: OPEC reduction in world oil supply 7%

- Jim Hamilton’s webinar
- 2022: Less oil dependent economy
 - ... but squeezed out last efficiency unit already
Upstream: Leontief, substitutability downstream

Aggregated substitutabilities – Production chain

- Input x, Gas_x Leontief 50:50
- Input y, Gas_y Leontief 50:50
- Input A, B substitutability

Aggregated substitutability:
- Case 1: 50:50 ➔ Leontief
- Case 2: 60:40, 50:50 ➔ substitutability
- Gas_x ≠ Gas_y if transport challenge!
Production chain: Ukraine vs. Covid

- O-ring theory (Leontief)
Production chain: Ukraine vs. Covid

- Substitute at every level
Financial Frictions

- Adjustment frictions
 - Company A using gas scales back
 - Company B using renewables scales up

- Financial frictions:
 - Company A goes bankrupt
 - Company B can’t raise funds
1. Following an import stop of Russian energy, by how much will German GDP decline relative to a "do nothing" baseline scenario?
 a. less than 1%
 b. 1%-3%
 c. 3%-5%
 d. 5%-10%
 e. more than 10%

2. If the EU were to impose a 40% tariff on all Russian energy, by how much ...?
 a. less than 1%
 b. 1%-3%
 c. 3%-5%
 d. 5%-10%
 e. more than 10%

3. Import stop of Russian energy ... by how much will the German inflation rate increase ...?
 a. less than 2%
 b. 2%-4%
 c. 4%-6%
 d. more than 6%
What if . . . ? The Economic Effects for Germany of a Stop of Energy Imports from Russia

Bachmann, Baqae, Bayer, Kuhn, Löschel, Moll, Peichl, Pittel, Schularick

Markus’ Academy

April 7, 2022
Objectives

Assess economic consequences for Germany of cut-off from Russian energy imports

- either embargo by Germany/EU
- or stop of deliveries by Russia

Worst-case scenario of cold turkey complete import stop

- arguably bounds other scenarios, say tariff
- less extreme policies may trigger full stop by Russia

Get sense of rough magnitudes of economic losses relative to “do nothing” baseline

1. Small GDP decline, say 0.5-1%, perhaps not even a recession?
2. Like Covid = 4.5% decline in German GDP?
3. Like Spain or Portugal during Euro crisis (5.1% & 7%)?
4. “Mass unemployment and poverty” so perhaps like Great Depression?
Takeaways

Economic losses relative to “do nothing” baseline?

1. Small GDP decline, say 0.5-1%, perhaps not even a recession?

2. Like Covid = 4.5% decline in German GDP?

3. Like Spain or Portugal during Euro crisis (5.1% & 7%)?

4. “Mass unemployment and poverty” so perhaps like Great Depression?

Headline numbers: **GDP decline between 0.5% and 3%**

Takeaways

1. Import stop likely somewhat less severe than Covid recession

2. That was a recession in which we were able to provide insurance & socialize costs
Not in paper but will talk about it

- Effects of import stop on inflation
German primary energy usage

<table>
<thead>
<tr>
<th></th>
<th>Oil (TWh)</th>
<th>Gas (TWh)</th>
<th>Coal (TWh)</th>
<th>Nuclear (TWh)</th>
<th>Renew. (TWh)</th>
<th>Rest (TWh)</th>
<th>Total (TWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TWh</td>
<td>1077</td>
<td>905</td>
<td>606</td>
<td>209</td>
<td>545</td>
<td>45</td>
<td>3387</td>
</tr>
<tr>
<td>%</td>
<td>31.8</td>
<td>26.7</td>
<td>17.9</td>
<td>6.2</td>
<td>16.1</td>
<td>1.3</td>
<td>100</td>
</tr>
<tr>
<td>of which Russia</td>
<td>34%</td>
<td>55%</td>
<td>26%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>30%</td>
</tr>
</tbody>
</table>

Oil and coal have **global market** (+ a strategic reserve)

Gas much trickier due to pipeline network, small LNG supplies ⇒ **focus on gas**
Size of the gas shock

Lose 55% of gas but some substitution possible (Bruegel, 2022, and others)

- Relevant time horizon: roughly until next winter (seasonality of gas demand)
- Increase gas imports from NOR, NL,...
- Substitute some gas in electricity generation (lignite, hard coal, nuclear)
- Lose 55% of gas, import or substitute 25% ⇒ gas ↓ 30%
- ⇒ energy shock: gas ↓ 30% or equivalently energy (gas+oil+coal) ↓ 8%
Plan for remainder of talk

1. Some facts about German economy and its energy dependence

2. Starting from facts, map energy shock into GDP/GNE losses using macro models
 - simplest model: importance of substitutability
 - sufficient statistics formula for richer models with supply chains (Baqae-Farhi)
 - model simulations: supply chains and international trade

3. Mechanisms outside models and other studies

4. France and other EU countries, embargo vs tariff
Facts I: Energy Dependence of German Economy

1. Consumption of gas, oil and coal: 4% of GNE

2. Imports of gas, oil and coal: 2.5% of GNE

3. Consumption of gas (also = imports): 1.2% of GNE

4. Gas usage and economic importance of broad economic sectors

<table>
<thead>
<tr>
<th></th>
<th>Households</th>
<th>Industry</th>
<th>Services, T&C</th>
<th>Electricity Gen.</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas usage (%)</td>
<td>30.8</td>
<td>36.9</td>
<td>12.8</td>
<td>12.6</td>
<td>6.9</td>
</tr>
<tr>
<td>Employment (%)</td>
<td>22.6</td>
<td>72.8</td>
<td>0.6</td>
<td>2.9</td>
<td></td>
</tr>
<tr>
<td>Gross Value Added (%)</td>
<td>25.9</td>
<td>69.7</td>
<td>2.2</td>
<td>2.3</td>
<td></td>
</tr>
</tbody>
</table>

Sources: BDEW (2021) and Eurostat (2020)
https://ec.europa.eu/eurostat/databrowser/view/NAMA_10_A64_E__custom_2410757/default/table?lang=en
https://ec.europa.eu/eurostat/databrowser/view/NAMA_10_A64__custom_2410837/default/table?lang=en

Numbers in 1.-3. small. But energy = critical input ⇒ amplification important.
Facts II: Hardest Hit Industries

<table>
<thead>
<tr>
<th></th>
<th>2022 Crisis (Import Stop)</th>
<th>2020 Crisis (Covid-19)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Employees (in 1,000)</td>
<td>352</td>
<td>941</td>
</tr>
<tr>
<td>Employees (% of total)</td>
<td>0.78</td>
<td>2.08</td>
</tr>
<tr>
<td>GVA (in €bln)</td>
<td>46</td>
<td>47</td>
</tr>
<tr>
<td>Gross Output (in €bln)</td>
<td>137</td>
<td>195</td>
</tr>
<tr>
<td>Share males (in %)</td>
<td>74</td>
<td>52</td>
</tr>
<tr>
<td>Share gas (%)</td>
<td>37</td>
<td>12</td>
</tr>
</tbody>
</table>

Source: Volkswirtschaftliche Gesamtrechnungen (2019)

3 hardest hit sectors:

- Make up 59% of industrial gas usage
- In terms of GVA, wages, and employees comparable to hardest hit sectors in 2020
- Big difference in gender to sectors shut down in 2020
Facts III: Direct exposure across the income distribution

- Expenditure shares for heating between 3-5%
- Relatively flat in income (=declining income share)
- Larger households have smaller heating shares (not shown)
- Gradient in income the same across household sizes
- Share of car fuels (not shown): inverse U-shape in income
Macro models

- Starting from facts, map energy shock into GDP/GNE losses using macro models
- e.g. recall gas = 1.2% of GNE/GDP, gas shock = −30%
- Two extreme non-sensical calculations that are inconsistent with data
 - GDP loss = 1.2% × −30% = −0.3%
 (Summers: financial crisis ⇔ electricity http://larrysummers.com/page/5/?s=secular+stagnation)
 - no substitutability whatsoever: GDP falls one for one with gas, i.e. −30%
- Our results: large amplification rel. to naive 0.3% calc but by factor of 10 not 100

Simplest model: CES production function

\[
Y = \left[(1 - \alpha)^\frac{1}{\sigma} F(K, L)^{\frac{\sigma - 1}{\sigma}} + \alpha^\frac{1}{\sigma} Gas^{\frac{\sigma - 1}{\sigma}} \right]^{\frac{\sigma}{\sigma - 1}}
\]

- Key parameters: elasticity of substitution \(\sigma\), gas share \(\alpha\)
- Two extreme cases above are Cobb-Douglas, \(\sigma = 1\), and Leontief, \(\sigma = 0\)
Elasticities of substitution and substitution more generally

Time dependence (le Chatelier)
- Very short run elasticity $<<$ long run elasticity
- Relevant horizon for import stop: until next winter (seasonality of gas demand)

Micro vs macro elasticities
- macro: substitution across production processes / firms (extensive margin)

Role of supply chains
- long supply chains create bottlenecks ...
- ... but also: the longer the chain, the more substitution possibilities

Substitution via imports
- substitute intermediate goods that become too expensive with imports
 - gas \rightarrow ammonia \rightarrow fertilizer \rightarrow ...
 - import fertilizer to preserve downstream production

See https://benjaminmoll.com/RussianGas_Substitution/ for more
Output losses for different elasticities of substitution

Small gas share $\alpha \Rightarrow$ even with very low σ output losses potentially far from Leontief
Richer models with supply chains and international trade

- Complex production network, i.e. supply chains/production cascades ⇒ allows for spill-overs and increased damages
- Multi-country ⇒ substitution via imports possible, e.g. import energy-intensive products instead of energy (e.g. basic chemicals, raw metals)
Conceptual Framework

Two objects of interest:

- German real consumption – real GNE, W
- German real production – real GDP, Y

- GDP includes production of exports, GNE includes consumption of imports
- We assume that initial equilibrium German production network is efficient
Conceptual Framework – Second-Order Approximation

Real consumption change

\[
\Delta \log W \approx \sum_{j \in \text{imports}} \frac{p_j m_j}{GNE} \Delta \log m_j - \sum_{i \in \text{exports}} \frac{p_i x_i^X}{GNE} \Delta \log x_i^X + \sum_{f \in \text{factor}} \frac{w_f L_f}{GNE} \Delta \log L_f
\]

\[
+ \frac{1}{2} \left[\sum_{j \in \text{imports}} \Delta \frac{p_j m_j}{GNE} \Delta \log m_j - \sum_{i \in \text{exports}} \Delta \frac{p_i x_i^X}{GNE} \Delta \log x_i^X + \sum_{f \in \text{factors}} \Delta \frac{p_f L_f}{GNE} \Delta \log L_f \right].
\]

Real production change

\[
\Delta \log Y \approx \sum_{f \in \text{factor}} \frac{w_f L_f}{GDP} \Delta \log L_f + \frac{1}{2} \sum_{f \in \text{factor}} \Delta \frac{w_f L_f}{GDP} \Delta \log L_f.
\]
Conceptual Framework – Key Quantities

\[\Delta \log W \approx \sum_{j \in \text{imports}} \frac{p_j m_j}{\text{GNE}} \Delta \log m_j - \sum_{i \in \text{exports}} \frac{p_i x_i}{\text{GNE}} \Delta \log x_i + \sum_{f \in \text{factor}} \frac{w_f L_f}{\text{GNE}} \Delta \log L_f \\
+ \frac{1}{2} \left[\sum_{j \notin D} \Delta \frac{p_j m_j}{\text{GNE}} \Delta \log m_j - \sum_{i \in D} \Delta \frac{p_i x_i}{\text{GNE}} \Delta \log x_i + \sum_{f \in F} \Delta \frac{p_f L_f}{\text{GNE}} \Delta \log L_f \right]. \]

Key uncertainties:

- \(\Delta \log m \): size of the shock — reduction in energy imports.
\[\Delta \log W \approx \sum_{j \in \text{imports}} \frac{p_j m_j}{GNE} \Delta \log m_j - \sum_{i \in \text{exports}} \frac{p_i x_i^X}{GNE} \Delta \log x_i^X + \sum_{f \in \text{factor}} \frac{w_f L_f}{GNE} \Delta \log L_f \\
+ \frac{1}{2} \left[\sum_{j \notin D} \frac{p_j m_j}{GNE} \Delta \log m_j - \sum_{i \in D} \frac{p_i x_i^X}{GNE} \Delta \log x_i^X + \sum_{f \in F} \Delta \frac{p_f L_f}{GNE} \Delta \log L_f \right]. \]

Key uncertainties:

- \(\Delta \log m \): size of the shock — reduction in energy imports.
- \(\Delta \frac{p_j m_j}{GNE} \): change in expenditures — complementarities/essentialness.
Conceptual Framework – Key Quantities

\[\Delta \log W \approx \sum_{j \in \text{imports}} \frac{p_j m_j}{GNE} \Delta \log m_j - \sum_{i \in \text{exports}} \frac{p_i x_i^X}{GNE} \Delta \log x_i^X + \sum_{f \in \text{factor}} \frac{w_f L_f}{GNE} \Delta \log L_f \]

\[+ \frac{1}{2} \left[\sum_{j \notin D} \Delta \frac{p_j m_j}{GNE} \Delta \log m_j - \sum_{i \in D} \Delta \frac{p_i x_i^X}{GNE} \Delta \log x_i^X + \sum_{f \in F} \Delta \frac{p_f L_f}{GNE} \Delta \log L_f \right]. \]

Key uncertainties:

- \(\Delta \log m \): size of the shock — reduction in energy imports.
- \(\Delta \frac{p_j m_j}{GNE} \): change in expenditures — complementarities/essentialness.
- \(\Delta \log L_f \): unemployment — principally due to negative aggregate demand effects.
Conceptual Framework – Key Quantities

\[\Delta \log W \approx \sum_{j \in \text{imports}} \frac{p_j m_j}{GNE} \Delta \log m_j + \frac{1}{2} \sum_{j \notin D} \Delta \frac{p_j m_j}{GNE} \Delta \log m_j + \sum_{f \in \text{factor}} \frac{w_f L_f}{GNE} \Delta \log L_f. \]

- **Key uncertainties:**
 - \(\Delta \log m \): size of the shock — reduction in energy imports.
 - \(\Delta \frac{p_j m_j}{GNE} \): change in expenditures — complementarities/essentialness.
 - \(\Delta \log L_f \): unemployment — principally due to negative aggregate demand effects.
Order of Magnitudes Calculation

- Suppose reduction in gas $\Delta \log m$ is -30%.

- Gas share of GNE/GDP is 1.2%.

- Suppose expenditure share quadruples (comparable to oil crisis in 70s).

Then

$$\Delta \log W \approx \frac{p_j m_j}{GNE} \Delta \log m_j + \frac{1}{2} \Delta \frac{p_j m_j}{GNE} \Delta \log m_j$$

$$= 1.2\% \times \log(0.7) + \frac{1}{2} \times 3.6\% \times \log(0.7) \approx -1\%$$

- To go further, use a series of structural models.
The Numbers

<table>
<thead>
<tr>
<th></th>
<th>Baqee-Farhi suff. statistic</th>
<th>Baqee-Farhi simulation</th>
<th>Simplest model 10% energy ↓</th>
<th>Simplest model 30% gas ↓</th>
</tr>
</thead>
<tbody>
<tr>
<td>GNE Loss, in %</td>
<td>< 1</td>
<td>< 0.3</td>
<td>1.5</td>
<td>2.3</td>
</tr>
<tr>
<td>As % of GDP</td>
<td>< 1</td>
<td>< 0.3</td>
<td>1.3</td>
<td>2.2</td>
</tr>
<tr>
<td>Per capita</td>
<td>€400</td>
<td>€100</td>
<td>€600</td>
<td>€900</td>
</tr>
</tbody>
</table>

- All Models use conservative elasticity estimates
- Simplest model (= production fn) abstracts from trade/substitution downstream
What is missing from calculations on previous page?

Business Cycle amplification effects

- Additional real and nominal frictions:
 - E.g. wage and price stickiness, financial frictions
 - \(\Rightarrow \) Contracts aggregate demand \(\Rightarrow \Delta \log L < 0 \)

- **Compensate lack of such frictions** with **pessimistic calibration** throughout:
 - Halve elasticities
 - Round up headline number (e.g. from 2.2 to 3%)
 - Focus on simple model where import substitution is absent

- **But**, note that:
 1. BF model has adjustments costs (fixed K and L)
 2. Run pessimistic sticky price scenarios in BF:
 \(\Rightarrow \) amplification by at most \(\times 2 \)
 3. Policy response can potentially attenuate significant part of amplification
Since business cycle amplification effects were missing . . .

Model

- Keynesian model with heterogeneous households
- Work by Bayer, Kriwoluzky, Seyrich & Müller (DIW, 2022)

The shock

- 3% of capital become obsolete (depreciation shock)
- TFP drops initially by 2.2%
Business Cycle Effects

- Assumption is lenient fiscal policy
- ECB increases interest rates to “lean against” rising inflation
Selected scenarios on the consequences of an intensification of the conflict for the economic outlook

<table>
<thead>
<tr>
<th>Institution</th>
<th>Scenario</th>
<th>Assumptions</th>
<th>GDP-dec.</th>
<th>Additional infl.</th>
<th>Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutsche Bank Research(^2)</td>
<td>Negative scenario with a temporary import stop of natural gas and oil from Russia</td>
<td>Sharply higher energy prices (Oil 140 US-$/barrel; natural gas 150 €/MWh)</td>
<td>1.5</td>
<td>1-1.5</td>
<td>Germany</td>
</tr>
<tr>
<td>ECB(^2)</td>
<td>Adverse scenario</td>
<td>Sharp temporary increase of natural gas prices and increase of oil prices</td>
<td>1.2</td>
<td>0.8</td>
<td>Euro area</td>
</tr>
<tr>
<td>ECB(^2)</td>
<td>Severe scenario</td>
<td>Sharper and longer increase of natural gas and oil prices; strong second round effects</td>
<td>1.4</td>
<td>2.0</td>
<td>Euro area</td>
</tr>
<tr>
<td>Oxford Economics(^2)</td>
<td>Stop of Russian natural gas imports for 6 months</td>
<td>Oil price between 100 and 115 US-$/barrel, natural gas price at 190 €/MWh</td>
<td>1.5</td>
<td>2.6</td>
<td>Euro area</td>
</tr>
<tr>
<td>Goldman Sachs(^2)</td>
<td>Stop of russian natural gas imports</td>
<td></td>
<td>2.2</td>
<td>-</td>
<td>Euro area</td>
</tr>
</tbody>
</table>

Effects relative to a baseline scenario incorporating the state of the conflict and sanctions at time of publication

<table>
<thead>
<tr>
<th>Institution</th>
<th>Scenario</th>
<th>Assumptions</th>
<th>GDP-dec.</th>
<th>Additional infl.</th>
<th>Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>EcoAustria(^2)</td>
<td>Increase of natural gas prices and stop of exports to Russia</td>
<td>Natural gas price of 172 €/MWh and no exports to Russia and to Ukraine</td>
<td>1.3</td>
<td>-</td>
<td>Austria</td>
</tr>
<tr>
<td>NIESR(^2)</td>
<td>Oil price at 140 US-$/barrel, higher public spending</td>
<td></td>
<td>0.8</td>
<td>2.5</td>
<td>Euro area</td>
</tr>
</tbody>
</table>

Effects relative to a baseline scenario not incorporating the state of the conflict and sanctions at time of publication

- Based on a production function approach with conservatively estimated elasticities of substitution, without common macroeconomic amplification mechanisms.
- Approximation of the GNE loss based on a sufficient statistic. Lemma 1 in Bachmann et al. (2022) derives the approximation in the general model of Baqaee and Farhi (2021). The approach does not incorporate common macroeconomic amplification mechanisms.

Very well done. Highly recommended.

- **German version:** https://www.sachverstaendigenrat-wirtschaft.de/fileadmin/dateiablage/Konjunkturprognosen/2022/KJ2022_Kasten3.pdf

- **Shortened English version:** https://www.sachverstaendigenrat-wirtschaft.de/fileadmin/dateiablage/Konjunkturprognosen/2022/KJ2022_Box3_Excerpt.pdf

No bottom line numbers in text but Volker Wieland clarified they mean 3-5% GDP loss

- too pessimistic for our taste but it’s their job to be pessimistic

Shoutout not just to the “sages” but also the team (Niklas Garnadt, Lars Other & co)
Criticisms we haven’t discussed yet

Krebs (2022)

▶ should have separate elasticity of substit’n for chemical industry, lower than 0.05
▶ can potentially use Baqee-Farhi sufficient statistics formula to do this
▶ ignore “no chemical industry” rhetoric https://twitter.com/ben_moll/status/1511351172363390976

Scholz (2022) and Habeck (2022)

▶ “where is the gas actually supposed to run through, where are the pipelines, what is the regasification capacity,...”
▶ “sheer physics stands in the way of these macroeconomic models, the time it takes to build the pipes, pipes that haven’t been built yet, ships that aren’t there yet...”
▶ large part does not seem to be about the macro models (which do respect physics = resource constraints, production functions,...)
 ▶ but that import/substitution of 25% gas, hence 30% gas shock too optimistic?
 ▶ or perhaps want spatial model w transport costs à la Rossi-Hansberg, Redding, ...?
▶ My sense (w/o having done it): such extensions unlikely to drastically ↑ numbers
France and other EU countries, embargo vs tariff

b. Impact of a complete ban vs a 40% tariff on Russian energy imports the most pessimistic calibration in terms of substitution

Figure 2. Estimated output losses from a stop of Russian energy imports for EU country (excl. Croatia): Simulations from Baqaee‐Farhi (2021) model

a. Impact of a complete ban on Russian energy imports for different calibrations

b. Impact of a complete ban vs a 40% tariff on Russian energy imports the most pessimistic calibration in terms of substitution
Conclusion

Costs of Embargo

- Estimated costs are substantial, but not catastrophic.
- Ballpark: somewhat smaller than COVID, worst-case 3% GDP on impact.
- Estimate is conservative
 (halved Elasticities, no import substitution on impact, rounding up)
- Distribution of costs: relatively equal across the income distribution.
Conclusion

Policy

- Make sure the price mechanism works, want people to substitute
- Prevent shock from falling entirely on industry or households, see appendix
- Monetary policy: raise interest rates to control inflation
- Bad fiscal policies: tax subsidies on energy, ...
- Make use of policies applied during COVID to socialize losses: bailouts, furlough (“Kurzarbeit”), all to avoid financial spillovers
- Substantial inflation effects might require adjustment of tax and transfer schedules
Some words of caution

What we do not say

▶ Embargo is the only or best policy option

What we do say

▶ Embargo in size comparable to COVID recession
▶ That was a recession in which we were able to provide insurance and socialize costs
Distribution of Gas Shock: Industry vs Rest?

Important question: which sector absorbs reduction in gas supplies?

Approximately 1000 TWh of gas, falls by 300 TWh = 30%

Current gas use across sectors (numbers rounded to ease calculation)

<table>
<thead>
<tr>
<th></th>
<th>Gas use in TWh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Industry</td>
<td>300</td>
</tr>
<tr>
<td>Households, services, electricity etc</td>
<td>700</td>
</tr>
</tbody>
</table>

Scenario 1 (extreme): gas reduction falls entirely on industry. Ind. gas ↓ by 300 TWh (100%)

Scenario 2 (extreme): gas reduction falls entirely on rest. Industrial gas does not fall at all.

Scenario 3: households etc save/substitute 100 TWh. Industrial gas ↓ by 200 TWh (66%)

Scenario 4: even distribution. Gas in all sectors falls by 30%

We assume either scenario 4 or that prices efficiently allocate shortfall
 ▶ depends on policy choices, more at end of presentation
Recall main results

<table>
<thead>
<tr>
<th></th>
<th>Baqee-Farhi suff. statistic</th>
<th>Baqee-Farhi simulation</th>
<th>Simplest model 10% energy ↓</th>
<th>Simplest model 30% gas ↓</th>
</tr>
</thead>
<tbody>
<tr>
<td>GNE Loss, in %</td>
<td>< 1</td>
<td>< 0.3</td>
<td>1.5</td>
<td>2.3</td>
</tr>
<tr>
<td>As % of GDP</td>
<td>< 1</td>
<td>< 0.3</td>
<td>1.3</td>
<td>2.2</td>
</tr>
<tr>
<td>Per capita</td>
<td>€400</td>
<td>€100</td>
<td>€600</td>
<td>€900</td>
</tr>
</tbody>
</table>

- Instead in scenario 3 in which shock falls largely on industry (simple model): industrial gas ↓ 66% ⇒ 33% (!) loss of industrial output

- Prevent shock from falling entirely on industry (or households)