markus'academy

The Unexpected Compression: Competition at Work in the Low Wage Economy

David Autor MIT wi

with Arindrajit Dube and Annie McGrew

08. Dec. 2022

Poll

- 1. Which group has seen the largest nominal wage gains during the Covid recovery?
 - a. Older college grads b. Younger college grads
 - c. Older high school grads d. Younger high school grads
- 2. Inflation losses are not offset by wage gains
 - a. for high-wage workers
 - c. for either

- b. for low-wage workers
- d. fully offset for both

- 3. Wage growth is
 - a. faster among **job-stayers** b. faster among **job-changers**
 - b. comparable between these groups
- 4. Has the market for low-wage workers simply
 - a. Labor **demand/supply** curve **shifted**
 - b. More competitive -- **Elasticity of labor supply** has increased, potentially lessening scope for exercise of **monopsony power**

Skill Premium after Covid

- Different forms of compensation
 - Blue collar workers/service sector
 ⇒ higher wages
 - White collar workers
 ⇒ WfH, flexibility
 - Preference shift: "search for meaning"
- Long Covid esp. in service sector
 - Slow rebuilding of labor participation
- Labor shortage everywhere

Skill Premium and Inflation

Class warfare

- Whenever economy recovers and workers gain bargaining power
 ⇒Central Banks lean against it with higher i
- Price-wage spiral
 - Constrain wage growth for workers with high MPC more
 ⇒depress wages growth of the poor (?)
- Higher *i* hurts growth stocks more tech sector layoffs
 ⇒lowers skill premium

Skill Premium and Inflation: Germany 1916-1923

Compression during high inflation, but not hyper-

(a) *Real wages for state employees*

"Financial Phillips' Curve": German Hyperinflation Brunnermeier, Correia, Luck, Werner, Zimmermann (2022)

The Unexpected Compression: Competition at Work in the Low Wage Economy

David Autor MIT & NBER Arin Dube UMass Amherst & NBER Annie McGrew UMass Amherst

Markus' Academy December 8, 2022

• The textbook model of perfect competition is static

- No unemployment, no labor shortage
- Wages automatically adjust to the value marginal product of labor

• The textbook model of perfect competition is static

- No unemployment, no labor shortage
- Wages automatically adjust to the value marginal product of labor

• Evidence on labor market competition tells us something different

- Employers don't face ∞ elastic labor supply Manning '21; Bassier et. al '19; Yeh '22
- In such a market, similar workers are paid differently due to frictional wage inequality

• The textbook model of perfect competition is static

- No unemployment, no labor shortage
- Wages automatically adjust to the value marginal product of labor

• Evidence on labor market competition tells us something different

- Employers don't face ∞ elastic labor supply Manning '21; Bassier et. al '19; Yeh '22
- In such a market, similar workers are paid differently due to frictional wage inequality

• How does a 'tightening' labor market interact with state of competition?

• The tightening 'post'-pandemic labor market offers an opportunity to find out

We will distinguish between two notions of labor market tightness

- Starting from perfect competition: Labor demand curve shifts out relative to labor supply curve, employment and wages rise, no change in competitive conditions
- Starting from imperfect competition: Labor supply curve becomes more elastic—job changes more responsive to wage levels, workers reallocate from 'bad' to 'good' jobs
 - \longrightarrow This distinction has normative implications

• Some unexpected facts: A sharp reversal in inequality, driven by rising wages among low-paid workers

- Some unexpected facts: A sharp reversal in inequality, driven by rising wages among low-paid workers
- A simple conceptual model: Changes in *demand* versus changes in *competition*

- Some unexpected facts: A sharp reversal in inequality, driven by rising wages among low-paid workers
- A simple conceptual model: Changes in *demand* versus changes in *competition*
- Evidence on changes in demand vs. changes in competition
 - **1** Rising job transition rates
 - 2 Labor market tightness and wage growth
 - **3** Who is quitting? The role of low pay
 - **4** The payoff to job change

- Some unexpected facts: A sharp reversal in inequality, driven by rising wages among low-paid workers
- A simple conceptual model: Changes in *demand* versus changes in *competition*
- Evidence on changes in demand vs. changes in competition
 - **1** Rising job transition rates
 - 2 Labor market tightness and wage growth
 - **3** Who is quitting? The role of low pay
 - **4** The payoff to job change
- Wage growth and price growth: What's the connection?

- Some unexpected facts: A sharp reversal in inequality, driven by rising wages among low-paid workers
- A simple conceptual model: Changes in *demand* versus changes in *competition*
- Evidence on changes in demand vs. changes in competition
 - **1** Rising job transition rates
 - 2 Labor market tightness and wage growth
 - **3** Who is quitting? The role of low pay
 - 4 The payoff to job change
- Wage growth and price growth: What's the connection?
- Conclusions and next steps

The State of Knowledge

- Effects of tight labor markets on earnings, job switching, job satisfaction
 - Unemployment and wage growth: Okun '73
 - Cyclicality of job switching and job satisfaction: Akerlof, Yellen, Rose '88
 - High-pressure 1990s labor market and wage growth: Katz, Krueger '99
 - Quit elasticities and job flows: Bassier, Dube, Naidu '22; Moscarini, Postel-Vinay '17
- Monopsony power and market conditions
 - Rising monopsony power: Manning '21; Yeh, Macaluso, Hershbein '22
 - Labor market pressure & employer market power: Hirsch, Jahn, Schnabel, '18; Bivens, Zipperer '18 Webber '22
- The relationship between wage pressure and price pressure
 - Katz & Krueger '99, Cerrato & Gitti '22
- Recent research on the 'post-pandemic' labor market
 - Rising remote work & real wage inequality: Altig, Barrero, Bloom, Davis, Meyer, Mihaylov '22
 - Post-pandemic missing workers Goda & Soltas '22
 - Post-pandemic inflation inequality Jaravel '22

Agenda

1 What does a competitive labor market look like?

2 Some unexpected facts

- The big employment rebound
- The unexpected wage compression

3 Distinguishing rising demand from increasing competition: Conceptual model

④ Distinguishing rising demand from increasing competition: Evidence

- Rising job transition rates (the 'Great Reshuffle')
- Labor market tightness and wage growth: Wage-Phillips curves
- Who is quitting? The role of low wages
- The payoff to job change

5 How much does wage pressure contribute to inflation?

6 Conclusions

Agenda

1 What does a competitive labor market look like?

2 Some unexpected facts

- The big employment rebound
- The unexpected wage compression

3 Distinguishing rising demand from increasing competition: Conceptual model

4 Distinguishing rising demand from increasing competition: Evidence

- Rising job transition rates (the 'Great Reshuffle')
- Labor market tightness and wage growth: Wage-Phillips curves
- Who is quitting? The role of low wages
- The payoff to job change

5 How much does wage pressure contribute to inflation?

6 Conclusions

Participation: Participation rates have largely rebounded – and Emp/Pop has risen by even more than labor force participation

🗕 Employment 🛛 🗝 Labor force

Education: Employment losses were much larger for non-college workers – but the rebound was also proportionately larger (2015-2022)

Occupations: Analogous pattern for low-, mid-, and high-wage occupations

Agenda

1 What does a competitive labor market look like?

2 Some unexpected facts

- The big employment rebound
- The unexpected wage compression

3 Distinguishing rising demand from increasing competition: Conceptual model

4 Distinguishing rising demand from increasing competition: Evidence

- Rising job transition rates (the 'Great Reshuffle')
- Labor market tightness and wage growth: Wage-Phillips curves
- Who is quitting? The role of low wages
- The payoff to job change

5 How much does wage pressure contribute to inflation?

6 Conclusions

Substantial wage growth in bottom of wage distribution — Inflation eats nominal gains above median (or above bottom quartile recently)

Regionally adjusted real wage growth in bottom of wage distribution

Wage inequality: Real wage trends by quantiles P10 growth > P50 growth > P90 growth

Pre-pandemic wage compression was underway between 2015 and 2020 — But only in states that were raising their minimum wages

State minimum wage

No state minimum wage

Minimum wages & state-level wage compression

Occupational inequality: Real wage growth fastest in lowest-paid 3rd of occs

Racial/ethnic inequality: Sharp fall in Black/Hispanic wage penalty

Young v. old inequality: Wage growth fastest for youngest workers, <40, <25

Educational inequality: High school workers < age 40 have steepest wage gains

HS vs. BA+ Under 40

HS vs. BA + Age 40 +

▶ Wage trends: Non-BA vs. BA, by age

Agenda

1 What does a competitive labor market look like?

2 Some unexpected facts

- The big employment rebound
- The unexpected wage compression

③ Distinguishing rising demand from increasing competition: Conceptual model

4 Distinguishing rising demand from increasing competition: Evidence

- Rising job transition rates (the 'Great Reshuffle')
- Labor market tightness and wage growth: Wage-Phillips curves
- Who is quitting? The role of low wages
- The payoff to job change

5 How much does wage pressure contribute to inflation?

6 Conclusions

Effect of inward labor supply shift in competitive labor market

 $\label{eq:market_level_impact} \begin{array}{l} \mbox{Market level impact} \\ \Delta \ln W > 0, \ \Delta \ln L < 0 \end{array}$

Effect of inward labor supply shift in competitive labor market

Subtle effects of rotation of labor supply curve in monopsonistic labor market

Low-wage monopsonistic firm

 $\Delta \ln W > 0, \; \Delta \ln L < 0$

Subtle effects of rotation of labor supply curve in monopsonistic labor market

Low-wage monopsonistic firm $\Delta \ln W > 0, \ \Delta \ln L < 0$

$$\label{eq:high-wage monopsonistic firm} \begin{split} & \text{High-wage monopsonistic firm} \\ & \Delta \ln W > 0, \; \Delta \ln L > 0 \end{split}$$

Why would the labor supply curve become more elastic?

Four plausible explanations

 Numerous involuntary separations during pandemic — Has reduced employer attachment, raised footlooseness
Why would the labor supply curve become more elastic?

Four plausible explanations

- Numerous involuntary separations during pandemic Has reduced employer attachment, raised footlooseness
- **2** Liquidity Pandemic savings are not yet exhausted

Why would the labor supply curve become more elastic?

Four plausible explanations

- Numerous involuntary separations during pandemic Has reduced employer attachment, raised footlooseness
- **2** Liquidity Pandemic savings are not yet exhausted
- **3** Word of mouth Everyone knows that everyone else is moving to a better job

Why would the labor supply curve become more elastic?

Four plausible explanations

- Numerous involuntary separations during pandemic Has reduced employer attachment, raised footlooseness
- **2** Liquidity Pandemic savings are not yet exhausted
- **3** Word of mouth Everyone knows that everyone else is moving to a better job
- 4 Formal theory Drops out of canonical job ladder model Burdett, Mortensen '98

Labor market tightness and voluntary job separations: Formalization

- Separations S in a job ladder model: $S(w) = \delta + \rho + \lambda_e (1 F(w))$
 - Where δ is exogenous outflow to nonemployment, ρ is exogenous EE to flows (sometimes to worse jobs)
 - F(w) is cumulative distribution of firm wages
 - EE separation rate to better-paying jobs: $\lambda_e (1 F(w))$
 - Separation rate depends only on the rank of the firm F(w)

• EE separation elasticity:
$$\epsilon^{EE} = \frac{-\lambda_e f(w)w}{\rho + \lambda_e (1 - F(w))}$$

- Offer arrival rate to workers $\lambda_e = \frac{m(JS,V)}{JS} = m(1,\theta)$
 - Matching function $m(JS, V) = m(1, \theta)$ where $\theta = \frac{V}{JS}$
 - Job seekers from unemployed and employed $JS = (1 + \phi(1 \delta))u + \phi(1 \delta))$
 - Implication: θ is a monotonically rising in the simpler tightness measure $\tilde{\theta} = V/u$

Labor market tightness and voluntary job separations: Formalization

1 EE sep elasticity $\epsilon^{EE} \uparrow$ in magnitude with tightness, as measured by θ or $\tilde{\theta}$

• Can happen either from an increase in V (e.g., + demand shock), or lower u (e.g., - labor force shock)

2 Key: ↑ tightness raises separations more at bottom of firm wage distribution

- Raises overall EE separation elasticity w.r.t. firm wage
- **3** [Note: Endogenizing wage offer distribution F(w) based on productivity distribution H(p) does not affect key comparative statics]

• EE separations:
$$\rho + \lambda_e(1 - F(w)) = \rho + \lambda_e(1 - H(k^{-1}(p)))$$

Agenda

1 What does a competitive labor market look like?

2 Some unexpected facts

- The big employment rebound
- The unexpected wage compression

3 Distinguishing rising demand from increasing competition: Conceptual model

4 Distinguishing rising demand from increasing competition: Evidence

- Rising job transition rates (the 'Great Reshuffle')
- Labor market tightness and wage growth: Wage-Phillips curves
- Who is quitting? The role of low wages
- The payoff to job change

5 How much does wage pressure contribute to inflation?

6 Conclusions

Agenda

1 What does a competitive labor market look like?

2 Some unexpected facts

- The big employment rebound
- The unexpected wage compression

3 Distinguishing rising demand from increasing competition: Conceptual model

4 Distinguishing rising demand from increasing competition: Evidence

- Rising job transition rates (the 'Great Reshuffle')
- Labor market tightness and wage growth: Wage-Phillips curves
- Who is quitting? The role of low wages
- The payoff to job change

5 How much does wage pressure contribute to inflation?

6 Conclusions

Overall monthly job-to-job transition rates: Approximately 15% above pre-pandemic levels

→ 2017-2019 → 2021 → 2022

Job-to-job transition rates among high school workers: Approximately 30% higher than prior to pandemic

Rising transition rates driven by young, high school-educated workers

- 2017-2019 - 2021 - 2022

High School, 40+

Agenda

1 What does a competitive labor market look like?

2 Some unexpected facts

- The big employment rebound
- The unexpected wage compression

3 Distinguishing rising demand from increasing competition: Conceptual model

Ø Distinguishing rising demand from increasing competition: Evidence

- Rising job transition rates (the 'Great Reshuffle')
- Labor market tightness and wage growth: Wage-Phillips curves
- Who is quitting? The role of low wages
- The payoff to job change

5 How much does wage pressure contribute to inflation?

6 Conclusions

Tightness and wage growth: Wage-Phillips curves

- Measuring labor market tightness: two ingredients
 - 1 Unemployment rate
 - 2 Job-to-job separation rate
- Tightness combines standardized EE-Sep and Unemp

Tightness_{st} = $0.5 \times \text{Std}(\text{Job-to-job separation rate}_{st}) - 0.5 \times \text{Std}(\text{Unemp}_{st})$

• Estimating equation: $\Delta \ln W$ between 2021q1q2 and 2022q2q3

 $\ln W_{ist}^{q} = \alpha_t + \beta^q \text{Tightness}_{s,2021q3-2022q1} \times [t = 2022q2q3] + X_i'\gamma + \delta_s + e_{ist}$

- Tightness is measured at the state level
- Wages from person-level microdata with SE's clustered at state level
- Controls: Education, age group, sex, race, sector (manuf, finance, business svcs, prof svcs), union covered, state Covid death rate

Components of tightness measure: EE separations and (-) unemployment

Sharp increase in tightness post-pandemic

Cross-state variation in tightness (2021q3 - 2022q1)

State-level wage-Phillips curve

State-level wage-Phillips curve especially steep for bottom quartile

State-level wage-Phillips curve steeper for high school < 40 v. everyone else

Many additional wage-Phillips results and cuts of the data

• By wage quartile

• Table: WPC by quartiles

• By age and education

→ Table: WPC by age & education

• With many sets of controls

▶ Table: WPC - trim 15th percentile

Agenda

1 What does a competitive labor market look like?

2 Some unexpected facts

- The big employment rebound
- The unexpected wage compression

3 Distinguishing rising demand from increasing competition: Conceptual model

Ø Distinguishing rising demand from increasing competition: Evidence

- Rising job transition rates (the 'Great Reshuffle')
- Labor market tightness and wage growth: Wage-Phillips curves
- Who is quitting? The role of low wages
- The payoff to job change

5 How much does wage pressure contribute to inflation?

6 Conclusions

Wage-separation elasticity as a measure of labor market power

- Quit elasticity is a key measure of labor market power
 - Responsiveness of job-to-job (EE) separations to wages Manning 2021; Bassier et al. 2022
- Using CPS, can estimate quits in 12 months following first wage observation
- Estimating equations
 - 1 Using own-wage variation, $w_{i,t-1}$

$$\mathsf{EEsep}_{it} = a + \beta_1 \ln w_{i,t-1} + \beta_2 \ln w_{i,t-1}^2 + X_{it}' \gamma + e_{it}$$

2 Using industry wage premiums, $\tilde{w}_{j(i),t-1}$

$$\mathsf{EEsep}_{it} = a + \beta_1 \ln \tilde{w}_{j(i),t-1} + \beta_2 \ln \tilde{w}_{j(i),t-1}^2 + X'_{it}\gamma + e_{it}$$

- Details
 - Own-wage controls: age, education, gender, race, ethnicity, state
 - Estimate both linear and quadratic fits, standard errors clustered at state level
 - In \tilde{w}_j : Wage regression on sex, age cubic, race, ethnicity, industry FE's (t = 2015 19)

Aside: Measurement error correction

- Using industry and occupation Δ to proxy annual job change is noisy
- We use monthly reported job changes to implement *error correction* procedure
 - Unfortunately, reported job separations are not available at 12 month horizon
 - Instead, use monthly reported job separations in combo with ind/occ $\Delta's$ to do measurement error correction
- Naive industry-occupation Δ measures are quite unreliable
 - Only $\sim 1/2$ of EE transitions based on ind/occ $\Delta's$ are true transitions
 - Only $\sim 1/2$ of true EE transitions are captured with ind/occ $\Delta's$
- Wage Δ gap for new hires v. stayers is **250%** larger than naive comparison
 - Commonly used Atlanta Fed Wage Tracker suffers from this problem

The aggregate wage-separation elasticity has not changed much — Pooling all education levels

Separation elasticity High school workers vs. everyone else

High School Only

Everyone but High School

The wage-separation elasticity has gotten steeper Among high school workers < age 40

High School, Age < 40

High School, Age 40 +

Separation elasticity – little change for highly educated workers Workers with a bachelor's degree or more by age

BA+, under 40

BA+, 40 +

Agenda

1 What does a competitive labor market look like?

2 Some unexpected facts

- The big employment rebound
- The unexpected wage compression

3 Distinguishing rising demand from increasing competition: Conceptual model

Ø Distinguishing rising demand from increasing competition: Evidence

- Rising job transition rates (the 'Great Reshuffle')
- Labor market tightness and wage growth: Wage-Phillips curves
- Who is quitting? The role of low wages
- The payoff to job change

5 How much does wage pressure contribute to inflation?

6 Conclusions

Why are people changing jobs so much? Wage gains are much larger among job changers than stayers

Increased switch rate + wage growth from switching for young HS workers Workers under 40 years old

EE transition rates

Stagnant switch rate + wage growth from switching for older workers Workers 40 years and older

Wage growth: switchers vs. stayers

EE transition rates

More mobility out of bottom half of wage distribution among HS<40 workers Using industry wage premia to proxy wage levels

More mobility out of bottom quartile of wage dist'n among HS<40 workers Using industry wage premia to proxy wage levels

Sharp rise in net mobility out of the Hospitality sector, esp. among HS < 40 Hospitality is the canonical low-wage, low-stability job sector

Industry wage premia for EE switchers—Origin vs. destination for full sample Most wage gains are not due to moves from lower-wage to higher-wage industries

Average Ind. Wage Premia

Gap in Ind. Wage Premia

Industry wage premia for High School < Age 40 EE switchers Most wage gains are not due to moves from lower-wage to higher-wage industries

Average Ind. Wage Premia

Gap in Ind. Wage Premia

Job $\Delta's$ and wage $\Delta's$ and: Summary

1 Wage growth faster among young HS graduates than others, e.g., BA+
Job $\Delta's$ and wage $\Delta's$ and: Summary

1 Wage growth faster among young HS graduates than others, e.g., BA+

2 Among job-stayers

- Young HS stayers: Wage growth keeping pace with inflation
- Young BA+ stayers: Wage growth falling short of inflation

Job $\Delta's$ and wage $\Delta's$ and: Summary

1 Wage growth faster among young HS graduates than others, e.g., BA+

2 Among job-stayers

- Young HS stayers: Wage growth keeping pace with inflation
- Young BA+ stayers: Wage growth falling short of inflation
- 3 Among employment-to-employment job changers
 - Wage gains conditional on EE transition are always larger for BA+ than for HS workers
 - But wage gain advantage has narrowed for BA+ relative to HS workers
 - And frequency of EE transitions increased substantially for HS workers relative to BA+
 - Thus, HS workers gaining relatively more from EE transitions than pre-pandemic

Job $\Delta's$ and wage $\Delta's$ and: Summary

1 Wage growth faster among young HS graduates than others, e.g., BA+

2 Among job-stayers

- Young HS stayers: Wage growth keeping pace with inflation
- Young BA+ stayers: Wage growth falling short of inflation
- 3 Among employment-to-employment job changers
 - Wage gains conditional on EE transition are always larger for BA+ than for HS workers
 - But wage gain advantage has narrowed for BA+ relative to HS workers
 - And frequency of EE transitions increased substantially for HS workers relative to BA+
 - Thus, HS workers gaining relatively more from EE transitions than pre-pandemic
- 4 Low-education switchers not primarily moving to higher wage inds & occs
 - Consistent with monopsony: workers moving to higher wage jobs doing similar work

Agenda

1 What does a competitive labor market look like?

2 Some unexpected facts

- The big employment rebound
- The unexpected wage compression

3 Distinguishing rising demand from increasing competition: Conceptual model

Ø Distinguishing rising demand from increasing competition: Evidence

- Rising job transition rates (the 'Great Reshuffle')
- Labor market tightness and wage growth: Wage-Phillips curves
- Who is quitting? The role of low wages
- The payoff to job change

6 How much does wage pressure contribute to inflation?

6 Conclusions

- Key questions
 - 1 How much does tightness contribute to inflation?
 - 2 How much does inflation erode beneficial effects of tightness on wages?
- Estimating equations: $\Delta \ln W$ between 2021q1q2 and 2022q2q3

$$\ln P_{i,r(s),t} = \alpha_t + \beta_p \times \text{Tightness}_{r(s),t=2021q3-2022q1} \times [t = 2022q2q3] + \gamma_{r(s)} + e_{i,r(s),t}$$

 $\ln W_{i,r(s),t} = \alpha_t + \beta_w \times \text{Tightness}_{r(s),2021q3-2022q1} \times [t = 2022q2q3] + \gamma_{r(s)} + e_{i,r(s),t}$

- Fit to person-level wage data with state-clustered SEs
- Form regional price indices as follows
 - For workers in 21 metro areas, use Bureau of Labor Statistics (BLS) metro price index
 - For workers in other metro areas, use average of state metros
 - For workers in states with no metro price index, use BLS regional price index

Wage Phillips Curves vs. Price Phillips Curve

Wage Phillips Curve (Nominal) vs. Price Phillips Curve

	(1)	(2)	(3)	(4)	(5)
A. Wage Phillips Curve	- Coefficient on	Tightness			
Overall	0.0246 ^{***}	0.0230***	0.0149 ^{**}	0.0130 ^{**}	0.0125*
	(0.0068)	(0.0067)	(0.0060)	(0.0060)	(0.0065)
1st Quartile	0.0668 ^{***}	0.0670 ^{***}	0.0647***	0.0644 ^{***}	0.0641 ^{***}
	(0.0160)	(0.0158)	(0.0154)	(0.0155)	(0.0162)
High School, under 40	0.0479 ^{***}	0.0526 ^{***}	0.0524***	0.0468 ^{***}	0.0463^{***}
	(0.0093)	(0.0102)	(0.0103)	(0.0102)	(0.0111)
B. Price Phillips Curve -	Coefficient on	Tightness			
Overall	0.0116 ^{***}	0.0115 ^{***}	0.0113 ^{***}	0.0122***	0.0120***
	(0.0039)	(0.0039)	(0.0040)	(0.0040)	(0.0041)
<i>Controls:</i> Age Demographics Sector and Union Covid Death Rate		×	× ×	× × ×	X X X X
Dependent variables are	log wage and race, education	log CPI. All spe	ecifications inclu	ide state and per	riod FE. Controls
include age group, sex.		1. industry (fina	nce. manuf. bu	siness sycs, prof	sycs), and union

include age group, sex, race, education, industry (finance, manuf, business svcs, prof svcs), and union coverage dummies, as well as state COVID death rates. Standard errors in parentheses, clustered at state level. * p < 0.10, ** p < 0.05, *** p < .01

Real Wage Phillips Curve – by Wage Quartile

	(1)	(2)	(3)	(4)	(5)
Overall	0.0151** (0.0066)	0.0136** (0.0058)	0.0055 (0.0047)	0.0036 (0.0048)	0.0032 (0.0052)
Within wage quantiles					
1st Quartile	0.0573 ^{***} (0.0178)	0.0576 ^{***} (0.0176)	0.0553 ^{***} (0.0172)	0.0550 ^{***} (0.0173)	0.0549 ^{***} (0.0175)
2nd Quartile	0.0428 ^{***} (0.0095)	0.0425 ^{***} (0.0096)	0.0410 ^{***} (0.0094)	0.0407 ^{***} (0.0093)	0.0406 ^{***} (0.0093)
3rd Quartile	-0.0184*** (0.0067)	-0.0180 ^{***} (0.0067)	-0.0172*** (0.0065)	-0.0179*** (0.0066)	-0.0180*** (0.0068)
4th Quartile	-0.0197 (0.0133)	-0.0203 (0.0133)	-0.0205 (0.0126)	-0.0201 (0.0125)	-0.0202 (0.0126)
Controls:					
Age		X	X	X	X
Demographics			X	X	X
Sector and Union				X	X
Covid Death Rate					~

Dependent variable is log wage. Wages deflated using metro level CPI when available, census division level otherwise. All specifications include state and period FE. Controls include age group, sex, race, education, industry (finance, manuf, business svcs, prof svcs), and union coverage dummies, as well as state COVID death rates. Standard errors in parentheses, clustered at state level. * p < 0.10, ** p < 0.05, *** p < .01

Real Wage Phillips Curve – by Age and Education

	(1)	(2)	(3)	(4)	(5)
High School, under 40	0.0388***	0.0435***	0.0433***	0.0377***	0.0373***
	(0.0100)	(0.0112)	(0.0112)	(0.0113)	(0.0119)
High School, 40+	0.0380*	0.0366*	0.0336*	0.0282	0.0278
	(0.0199)	(0.0189)	(0.0193)	(0.0175)	(0.0169)
Some College, under 40	0.0399***	0.0333***	0.0316***	0.0270***	0.0266***
	(0.0111)	(0.0102)	(0.0094)	(0.0092)	(0.0099)
Some College, 40+	0.0071	0.0054	0.0035	0.0050	0.0047
	(0.0117)	(0.0114)	(0.0114)	(0.0104)	(0.0106)
BA+, under 40	-0.0344***	-0.0331***	-0.0299**	-0.0289**	-0.0292**
	(0.0130)	(0.0126)	(0.0129)	(0.0122)	(0.0119)
BA+, 40+	-0.0300**	-0.0317**	-0.0288**	-0.0284**	-0.0287**
	(0.0121)	(0.0129)	(0.0128)	(0.0127)	(0.0131)
<i>Controls:</i> Age Demographics Sector and Union		х	× ×	× × ×	× × ×
Covid Death Rate					X

Dependent variable is log wage. Wages deflated using metro level CPI when available, census division level otherwise. All specifications include state and period FE. Controls include age group, sex, race, education, industry (finance, manuf, business svcs, prof svcs), and union coverage dummies, as well as state COVID death rates. Standard errors in parentheses, clustered at state level. * p < 0.10, ** p < 0.05, *** p < .01

- Cannot reject that labor market tightness has same impact on local price level and mean local wages
 - Consistent with Katz & Krueger '99
 - Also consistent with Cerrato & Gitti '22 for local prices (they don't examine wages)

- Cannot reject that labor market tightness has same impact on local price level and mean local wages
 - Consistent with Katz & Krueger '99
 - Also consistent with Cerrato & Gitti '22 for local prices (they don't examine wages)
- Estimates imply that labor market tightness contributes about 1 pct point to post-pandemic inflation (small part of total)

- Cannot reject that labor market tightness has same impact on local price level and mean local wages
 - Consistent with Katz & Krueger '99
 - Also consistent with Cerrato & Gitti '22 for local prices (they don't examine wages)
- Estimates imply that labor market tightness contributes about 1 pct point to post-pandemic inflation (small part of total)
- But tightness associated with real wage growth among bottom two quartiles of workers, young high school and some-college workers

- Cannot reject that labor market tightness has same impact on local price level and mean local wages
 - Consistent with Katz & Krueger '99
 - Also consistent with Cerrato & Gitti '22 for local prices (they don't examine wages)
- Estimates imply that labor market tightness contributes about 1 pct point to post-pandemic inflation (small part of total)
- But tightness associated with real wage growth among bottom two quartiles of workers, young high school and some-college workers
- But what about *inflation inequality: Are low-wage workers subject to disproportionate inflation?*
 - Effective inflation rate is lower for low- and high-wage workers/ households Jaravel '22

Inflation Inequality by Income Percentile

Inflation Inequality by Income Percentile: Excluding Gas & Vehicles

Agenda

1 What does a competitive labor market look like?

2 Some unexpected facts

- The big employment rebound
- The unexpected wage compression

3 Distinguishing rising demand from increasing competition: Conceptual model

4 Distinguishing rising demand from increasing competition: Evidence

- Rising job transition rates (the 'Great Reshuffle')
- Labor market tightness and wage growth: Wage-Phillips curves
- Who is quitting? The role of low wages
- The payoff to job change

5 How much does wage pressure contribute to inflation?

6 Conclusions

- 1 For first time in four decades, wage inequality falling, due to rising lower tail
- **2** Despite inflation, *real wages rising* among young HS grads, 1st quartile workers
- It's tempting to attribute this change to 'tight' labor markets—but what does this mean in practice?

- 1 For first time in four decades, wage inequality falling, due to rising lower tail
- **2** Despite inflation, *real wages rising* among young HS grads, 1st quartile workers
- It's tempting to attribute this change to 'tight' labor markets—but what does this mean in practice?
 - The *simplest explanation* is that labor markets are operating on a higher point on the labor demand curve
 - Evidence indicates this explanation *too simple*: Competition has intensified

- 1 For first time in four decades, wage inequality falling, due to rising lower tail
- **2** Despite inflation, *real wages rising* among young HS grads, 1st quartile workers
- It's tempting to attribute this change to 'tight' labor markets—but what does this mean in practice?
 - The *simplest explanation* is that labor markets are operating on a higher point on the labor demand curve
 - Evidence indicates this explanation *too simple*: Competition has intensified
- Oistinction is critical: Rising competition means higher wages that better reflect productivity and higher aggregate productivity — a <u>double dividend</u>

- 1 For first time in four decades, wage inequality falling, due to rising lower tail
- **2** Despite inflation, *real wages rising* among young HS grads, 1st quartile workers
- It's tempting to attribute this change to 'tight' labor markets—but what does this mean in practice?
 - The *simplest explanation* is that labor markets are operating on a higher point on the labor demand curve
 - Evidence indicates this explanation *too simple*: Competition has intensified
- Distinction is critical: Rising competition means higher wages that better
 reflect productivity and higher aggregate productivity a double dividend
- **6** Next: Use worker-firm matched data to study Δ 's in labor supply elasticities

Thank you

Appendix slides

Aside: Role of state minimum wage laws in wage compression, 2015–2019

Aside: Role of state minimum wage laws in wage compression, 2015–2019

Remarkable overtaking of wage growth among less educated workers, 2015-2022

Remarkable overtaking of wage growth among High-school vs. college-educated workers, 2015-2022

Steepest wage gains found among non-college grads under age 40, 2015-2022

Non-BA vs. BA Under 40

Non-BA vs. BA Age 40+

✓ Wage trends: HS vs. BA, by age

Routine v. non-routine cognitive v. non-routine manual occupations Wage growth fastest in 'less-skilled' occupations (2015-2022)

Real wage trends by quantiles and metro area status

Non-metro Area

Job-to-job transitions: non-BA workers

High School

Some College

Nominal Wage Phillips Curve – by Wage Quartile

	(1)	(2)	(3)	(4)	(5)
Overall	0.0246*** (0.0068)	0.0230*** (0.0067)	0.0149^{**} (0.0060)	0.0130** (0.0060)	0.0125* (0.0065)
Within wage quantiles	(0.0000)	(0.000)	(0.0000)	(0.0000)	(0.0000)
1st Quartile	0.0668***	0.0670***	0.0647***	0.0644***	0.0641***
	(0.0160)	(0.0158)	(0.0154)	(0.0155)	(0.0162)
2nd Quartile	0.0521***	0.0519***	0.0504***	0.0500***	0.0497***
	(0.0107)	(0.0108)	(0.0107)	(0.0107)	(0.0106)
3rd Quartile	-0.0090	-0.0087	-0.0078	-0.0085	-0.0088
	(0.0082)	(0.0082)	(0.0082)	(0.0083)	(0.0087)
4th Quartile	-0.0108	-0.0114	-0.0116	-0.0112	-0.0115
	(0.0145)	(0.0145)	(0.0138)	(0.0137)	(0.0139)
<i>Controls:</i> Age Demographics Sector and Union Covid Death Rate		х	× ×	× × ×	× × × ×

Dependent variable is log wage. All specifications include state and period FE. Controls include age group, sex, race, education, industry (finance, manuf, business svcs, prof svcs), and union coverage dummies, as well as state COVID death rates. Standard errors in parentheses, clustered at state level. * p < 0.10, ** p < 0.05, *** p < 0.01

Nominal Wage Phillips Curve – by Age and Education

	(1)	(2)	(3)	(4)	(5)
High School, under 40	0.0479 ^{***}	0.0526***	0.0524***	0.0468 ^{***}	0.0463 ^{***}
	(0.0093)	(0.0102)	(0.0103)	(0.0102)	(0.0111)
High School, 40+	0.0477 ^{**}	0.0463 ^{***}	0.0433 ^{**}	0.0379**	0.0374 ^{**}
	(0.0189)	(0.0179)	(0.0185)	(0.0166)	(0.0158)
Some College, under 40	0.0491 ^{***}	0.0424 ^{***}	0.0407***	0.0362***	0.0356 ^{***}
	(0.0107)	(0.0106)	(0.0103)	(0.0099)	(0.0107)
Some College, 40+	0.0161	0.0144	0.0124	0.0139	0.0136
	(0.0122)	(0.0120)	(0.0124)	(0.0114)	(0.0116)
BA+, under 40	-0.0246*	-0.0232*	-0.0200	-0.0191	-0.0194
	(0.0140)	(0.0136)	(0.0140)	(0.0133)	(0.0130)
BA+, 40+	-0.0207	-0.0224	-0.0194	-0.0191	-0.0194
	(0.0143)	(0.0151)	(0.0148)	(0.0148)	(0.0153)
Controls:					
Age		х	×	×	×
Sector and Union			~	×	×
Covid Death Rate				~	x
Dependent variable is log	wage All specif	ications include	state and period	EE Controls in	clude age group

Dependent variable is log wage. All specifications include state and period FE. Controls include age group, sex, race, education, industry (finance, manuf, business svcs, prof svcs), and union coverage dummies, as well as state COVID death rates. Standard errors in parentheses, clustered at state level. * p < 0.10, ** p < 0.05, *** p < .01

Nominal Wage Phillips Curve – trimming bottom 15th percentile

	(1)	(2)	(3)	(4)	(5)
Overall	0.0220***	0.0220***	0.0152***	0.0134**	0.0128**
	(0.0073)	(0.0072)	(0.0054)	(0.0055)	(0.0061)
1st Quartile	0.0880***	0.0881***	0.0846***	0.0839***	0.0835***
	(0.0118)	(0.0117)	(0.0111)	(0.0111)	(0.0115)
High School, under 40	0.0584***	0.0604***	0.0593***	0.0547***	0.0540***
	(0.0116)	(0.0116)	(0.0115)	(0.0107)	(0.0107)
Controls:					
Age		Х	Х	Х	Х
Demographics			Х	Х	Х
Sector and Union				Х	Х
Covid Death Rate					Х

Dependent variable is log wage. Observations trimmed to those above the 15th wage percentile at the state, period level. All specifications include state and period FE. Controls include age group, sex, race, education, industry (finance, manuf, business svcs, prof svcs), and union coverage dummies, as well as state COVID death rates. Standard errors in parentheses, clustered at state level. * p < 0.10, ** p < 0.05, *** p < 0.10

Employment-to-Employment Separation Elasticity Estimates

	Individ	ual-level Wage	Industry Wag	je Premium	
	(1)	(2)	(3)	(4)	
Overall					
2015-2019	-0.2014**	* -0.2810***	-0.8400***	-0.5980***	
	(0.0392)	(0.0286)	(0.1278)	(0.0958)	
2021-2022	-0.1209	-0.2986***	-0.8725***	• -0.5568***	
	(0.0971)	(0.0753)	(0.1887)	(0.1267)	
High School Educa	ted, Under 4	0 Years Old			
2015-2019	-0.1482	-0.0622	-0.8163***	-0.5773***	
	(0.1218)	(0.0788)	(0.1403)	(0.1346)	
2021-2022	-0.5859**	-0.4321**	-1.1241***	-0.7819***	
	(0.2746)	(0.1933)	(0.2169)	(0.1861)	
Aggregation Level	Individual	Individual	3-digit Ind.	3-digit Ind.	
Time Interval	3-month	Annual (adjusted)	Monthly	Monthly	
Controls	Y	Y	N	Y	

* p < 0.10, ** p < 0.05, ***p < .01. Standard errors in parentheses

Employment-to-Employment Separation Elasticity Estimates

	Individu	ual-level Wage	Industry Wag	ge Premium	
	(1)	(2)	(3)	(4)	
High School Educa	ted				
2015-2019	-0.2131*** (0.0807)	* -0.1444** (0.0603)	-0.9187*** (0.1930)	-0.5817*** (0.1348)	
2021-2022	-0.3081* (0.1866)	-0.2472 (0.1555)	-1.1550*** (0.2663)	-0.7424*** (0.1736)	
Bachelor's Degree	or Higher				
2015-2019	-0.1964*** (0.0593)	* -0.3503*** (0.0463)	-0.7248*** (0.1994)	-0.6793*** (0.1750)	
2021-2022	-0.0900 (0.1505)	-0.3654*** (0.1188)	-0.5449*** (0.2020)	-0.5231*** (0.1622)	
Aggregation Level	Individual	Individual	3-digit Ind.	3-digit Ind.	
Time Interval	3-month	Annual (adjusted)	Monthly	Monthly	
Controls	Y	Y	N	Y	

* p < 0.10, ** p < 0.05, ***p < .01. Standard errors in parentheses

Employment-to-Employment Separation Elasticity Estimates Linear and Quadratic Fit

	Over	all	HS, und	er 40	HS, 4	0 +	BA+, un	der 40	BA+,	40+
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
2015-2019										
Ind. Wage Premium	-0.5980*** (0.0958)	-0.5986*** (0.0807)	-0.5773*** (0.1346)	-0.5618*** (0.1364)	-0.4913*** (0.1552)	-0.5224*** (0.1732)	-0.8572*** (0.2153)	-0.6214*** (0.1979)	-0.4353*** (0.1430)	-0.3165* (0.1909)
Ind. Wage Premium ²		0.5168 (0.3151)		-0.1662 (0.3867)		0.5821 (0.4500)		1.3931*** (0.4692)		0.5855 (0.4644)
2021-2022										
Ind. Wage Premium	-0.5568*** (0.1267)	-0.5799*** (0.0777)	-0.7819*** (0.1861)	-0.9163*** (0.1730)	-0.6498*** (0.2052)	-0.6967*** (0.1934)	-0.6473*** (0.2038)	-0.4612*** (0.1696)	-0.4099*** (0.1496)	-0.3454* (0.1944)
Ind. Wage Premium ²		0.9674*** (0.2864)		1.4079* (0.7243)		0.9815* (0.5856)		1.3510*** (0.3945)		0.3465 (0.5287)

* p < 0.10, ** p < 0.05, *** p < .01

Standard errors in parentheses

Movement between top half and bottom half of the 3-digit industry wage premia distribution

	(1)	(2)	(3)	
	2015-2019	2021-2022	Difference	
Switching	up: bottom hal	f of IWP to to	o half	
Overall	0.00492***	0.00518***	0.00026	
	(0.00009)	(0.00017)	(0.00019)	
HS, under 40	0.00852*** (0.00031)	0.01047*** (0.00061)	0.00196*** (0.00069)	
Switching d	own: top half c	f IWP to botto	m half	
Overall	0.00421***	0.00436***	0.00014	
	(0.00008)	(0.00015)	(0.00017)	
HS, under 40	0.00626***	0.00615***	-0.00011	
	(0.00026)	(0.00044)	(0.00051)	

Standard errors in parentheses

* p < 0.10, ** p < 0.05, *** p < .01

Movement in and out of the bottom quartile of the 3-digit industry wage premia distribution

	(1)	(2)	(3)			
	2015-2019	2021-2022	Difference			
Switching up: switching out of bottom quartile of IWP						
Overall	0.00977***	0.01080***	0.00103***			
	(0.00018)	(0.00034)	(0.00039)			
HS, under 40	0.01414***	0.01999***	0.00585***			
	(0.00055)	(0.00118)	(0.00130)			
Switching down: switching into bottom quarter of IWP						
Overall	0.00254***	0.00257***	0.00002			
	(0.00005)	(0.00009)	(0.00011)			
HS, under 40	0.00341***	0.00366***	0.00025			
	(0.00016)	(0.00029)	(0.00033)			

Standard errors in parentheses

* p < 0.10, ** p < 0.05, *** p < .01

Movement in and out of hospitality industry

	(4)	(2)	(0)			
	(1)	(2)	(3)			
	2015-2019	2021-2022	Difference			
	Switching into I	Hospitality				
Overall	0.00090***	0.00092***	0.00002			
	(0.00003)	(0.00005)	(0.00006)			
HS, under 40	0.00239***	0.00288***	0.00048*			
	(0.00013)	(0.00024)	(0.00027)			
Switching out of Hospitality						
Overall	0.01396***	0.01670***	0.00274**			
	(0.00039)	(0.00079)	(0.00088)			
HS, under 40	0.01456***	0.01982***	0.00526**			
	(0.00064)	(0.00137)	(0.00151)			

Standard errors in parentheses

* p < 0.10, ** p < 0.05, *** p < .01

Price Phillips Curve

Various Specifications of Regression of Log CPI on Measures of Tightness

	(1)	(2)	(3)	(4)	(5)
A. Independent var	: Tightness				
Tightness	0.0116 ^{***} (0.0039)	0.0115 ^{***} (0.0039)	0.0113 ^{***} (0.0040)	0.0122 ^{***} (0.0040)	0.0120 ^{***} (0.0041)
B. Independent var:	1 - Unemployn	nent			
1-Unemp	0.6808 ^{***} (0.1979)	0.6771*** (0.1975)	0.6754 ^{***} (0.2040)	0.7282 ^{***} (0.2064)	0.7060 ^{***} (0.2008)
C. Independent var:	EE Separation	Rate			
EE Sep	0.8329 (0.8911)	0.8220 (0.8869)	0.7648 (0.9104)	0.8251 (0.9255)	0.8762 (0.9437)
<i>Controls:</i> Age Demographics Sector and Union Covid Death Rate		×	××	X X X	X X X X

Dependent variable is Log CPI. All specifications include state and period FE. Controls include age group, sex, race, education, industry (finance, manuf, business svcs, prof svcs), and union coverage dummies, as well as state COVID death rates. Standard errors in parentheses, clustered at state level. * p < 0.10, ** p < 0.05, *** p < .01

Price Phillips Curve - benchmarked specifications

Various Specifications of Price Phillips Curve

	(1)	(2)	(3)	(4)	(5)	(6)
			Dep V	'ar: ∆Inflation		
Δ Unemp	-0.7924* (0.3897)	-0.7290* (0.3682)	-1.4588** (0.6607)	-0.9821 (0.6375)	-0.9578 (0.6196)	
	Dep var: Δ LogCPI					
Unemp			-1.2120 ^{**} (0.5421)	-1.1523** (0.4667)	-1.1913*** (0.4609)	-0.8132** (0.3580)
Pre-period	Jan/Feb '20	Jan/Feb '20	Jan-Jun '19	Sep '19-Feb '20	Jan/Feb '20	Jan-Jun '21
Post-period	Mar/Apr '22	Mar/Apr '22	Apr-Sep '22	Apr-Sep '22	Apr-Sep '22	Apr-Sep '22
LAUS adjustment		X	X	X	X	X
Imputed CPI			Х	Х	Х	Х
Sample includes 21	main metropolit	an areas for whic	ch CPI is reporte	d at the metro leve	I. Column 1 repli	icates Figure 2 in
Cerrato & Gitti (20	22). LAUS adjust	tment indicates se	easonally adjuste	d unemployment rate	es from BLS LAU	S. CPI is reported
					0.5[/n(CP)	$(a, b) \pm ln(CPl_{1,1}, a)$

bimonthly. Cols 3-6 impute for missing monthly CPI assuming constant growth such that $CPI_t = e^{0.5[ln(CPI_{t-1})+ln(CPI_{t+1})]}$. Standard errors in parentheses, clustered at state level. * p < 0.10, ** p < 0.05, *** p < .01