markus'academy

The A.I. Dilemma: Growth versus Existential Risk

Chad Jones Stanford

26. May 2023

Existential Risk -- Resilience

- Collapse -- bouncing back
 - Trap
 - Tipping point

Existential Risk -- Resilience

Existential Risk -- Resilience

Resilience and Speed (of Transition)

- Does slowing down de-risk/ "re-resilience"
- More time to respond to
 - Lean against shock
 - Amplify

Aggregation: Resilience/Existential Risk

egatior

Individual *utility*

System (spillover)

Subsystem is less resilient to make system more resilient

Humanity

- 10% of population dies, 90%
 - Live forever
 - consumption boost

• Society welfare

- Everyone resilient?
- Heterogeneity
 Preference for diversity

Al Risk vs. Climate Risk vs. Nuclear Risk

- Similarities and differences
- Climate Risk
 - Fat tail risk
 - ⇒ higher discount rate (Martin Weitzman)
- Nuclear (war) risk
 - Proliferation control

Poll

- 1. What is the probability that technology improvements such as **A.I. will raise the average growth rate** of U.S. GDP per person to more than 5% per year for at least a decade during the next fifty years?
 - a. < 5% b. 5% to 20% c. 20% to 40% d. >40%
- 2. What is the probability that an A.I. model will be used for nefarious purposes in a way that causes the S&P 500 stock market index to decline by more than 15% on a given day during the next decade?
 - a. < 5% b. 5% to 20% c. 20% to 40% d. >40%
- 3. What is the probability that a future A.I. will cause the **death of more than 50% of** the world's **population** during the next century?
 - a. < 5% b. 5% to 20% c. 20% to 40% d. >40%

The A.I. Dilemma: Growth versus Existential Risk

> Chad Jones Stanford GSB

May 26, 2023

The Costs and Benefits of A.I.

- A.I. experts emphasize astounding potential benefits and costs:
 - Benefit: Faster economic growth. Singularity?
 - Cost: Existential risk some probability of human extinction
- How should we trade these off?
- Should we shut down A.I. research or celebrate it?

Outline

- Simple model: Highlight basic considerations
 - Intuitive solution
 - Requires calibrating the xistential risk
- Richer model
 - Existential risk cutoff no need to calibrate the risk itself
 - Singularity?
 - o Mortality improvements?

Cannot provide a firm answer. But models highlight interesting and surprising considerations.

Literature

- Existential risk: Joy (2000), Bostrom (2002, 2014), Rees (2003), Posner (2004), Yudkowsky et al (2008), Ngo et al (2023)
- A.I. and growth: Aghion et al (2018), Trammell and Korineck (2020), Davidson (2021)
- Life and growth: Jones (2016), Aschenbrenner (2020)
- Value of life: Rosen (1988), Murphy and Topel (2003), Nordhaus (2003), Hall and Jones (2007), Martin and Pindyck (2015, 2020)

Simple Model

Economic Environment

- Choose *T* = how intensively to use A.I. (e.g. "how many years")
 - Consumption: $c = c_0 e^{gT}$ growth at exogenous rate *g*, e.g. 10% per year
 - Existential risk: Probability of survival is $S(T) \equiv e^{-\delta T}$.
- Simplify so the model is essentially static:
 - All growth and x-risk occurs immediately
 - If survive, consume constant c_T forever
- N people \Rightarrow social welfare

$$U = N \int_0^\infty e^{-\rho t} u(c) dt = \frac{1}{\rho} N u(c)$$

Optimal Use of the A.I.

• Choose $T \ge 0$ to maximize expected social welfare:

$$EU = S(T) \cdot \frac{1}{\rho} Nu(c) = e^{-\delta T} \cdot \frac{1}{\rho} Nu(c_0 e^{gT})$$

• First order condition:

$$v(c) \equiv rac{u(c)}{u'(c)c} = rac{d\log c/dT}{-d\log S/dT} = rac{g}{\delta}$$

- Doesn't depend on N or ρ
 - All people enjoy both the benefits and the costs forever

Intuition

$$v(c^*) = \frac{g}{\delta}$$

- $v(c) \equiv u(c)/u'(c)c$ = value of a year life life, measured in years of consumption
 - In U.S. today: VSLY \approx \$250k and $c \approx$ \$40k \Rightarrow $v(c_{us,today}) \approx 6$
 - An average year of life is worth 6 years of consumption
- Optimal $T^* \Rightarrow$ use the A.I. as long as

 $\frac{\delta \ v(c)}{\text{Lost lives}} \leq \frac{g}{\text{Extra growth}}$

- Call g/δ the A.I. Benefit-Cost (AIBC) ratio
 - Use the A.I. as long as v(c) is below the AIBC ratio

Assume

$$u(c) = \begin{cases} \bar{u} + \frac{c^{1-\gamma}}{1-\gamma} & \text{if } \gamma \neq 1\\ \bar{u} + \log c & \text{if } \gamma = 1 \end{cases}$$

• The value of life is given by

$$v(c) \equiv \frac{u(c)}{u'(c)c} = \begin{cases} \bar{u}c^{\gamma-1} + \frac{1}{1-\gamma} & \text{if } \gamma \neq 1\\ \bar{u} + \log c & \text{if } \gamma = 1 \end{cases}$$

– increases with c for $\gamma \geq 1$

Bounded flow utility when $\gamma>1$

Quantification

- Calibrating key parameters:
 - Growth: g = 10%. High, but taking seriously the most optimistic claims
 - Existential risk: $\delta = 1\%$ or 2%. Useful for illustrating a point
- Recall $v(c_{us,today}) = 6$
 - Normalize $c_0 = 1$

Consumption and Existential Risk: $\delta = 1\%$

- $g = 10\% \Rightarrow AIBC = 10 \Rightarrow v(c^*) = 10$
 - Recall $v(c_{us,today}) = 6$
- Log utility: $v(c) = \bar{u} + \log c$
 - $\Rightarrow \log c$ rises by 4

Consumption and Existential Risk: $\delta = 1\%$

- $g = 10\% \Rightarrow AIBC = 10 \Rightarrow v(c^*) = 10$
 - Recall $v(c_{us,today}) = 6$
- Log utility: $v(c) = \overline{u} + \log c$ $\Rightarrow \log c$ rises by 4
 - .
 - $\circ \exp(4) \approx 55$
 - At g = 10% this takes $T^* = 40$ years
 - $S(T^*) = \exp(-.01 \times 40) \approx 0.67$

With log utility, run the A.I. for 40 years: consumption rises by a factor of 55 — roughly the factor by which U.S. has grown in 2000 years — in exchange for a 1 in 3 chance of extinction!

Quantitative Results from the Simple Model

γ	С*	T^*	Exist.Risk
1	54.60	40.0	0.33

Consumption and Existential Risk: $\delta = 1\%$

- $g = 10\% \Rightarrow AIBC = 10 \Rightarrow v(c^*) = 10$
 - Recall $v(c_{us,today}) = 6$
- CRRA $\gamma = 2$: $v(c) = \overline{u} \cdot c 1$
 - *c* rises by 100x less: 57% vs. 55x
 - Run the A.I. for $T^* = 4.5$ years
 - $S(T^*) = \exp(-.01 \times 4.5) \approx 0.96$

Quantitative Results from the Simple Model

γ	С*	T^*	Exist.Risk
1	54.60	40.0	0.33
2	1.57	4.5	0.04
3	1.27	2.4	0.02

With $\gamma = 2$, dramatically more conservative use of A.I.! Run for 4 years leading to a 57% gain in consumption with a 4% existential risk.

What if $\delta = 2\%$ instead of 1%?

- g = 10% and $\delta = 2\% \Rightarrow$ AIBC=5 instead of 10.
 - But then $v(c_{us,today}) = 6 > AIBC$
- Therefore it is optimal to set $T^* = 0$ regardless of the utility function
 - Life is already too valuable relative to the AIBC ratio
 - A.I. is too risky to make even 10% growth worthwhile

Heterogeneity and the Value of Life

Key Point 1 (Sensitive to δ): Optimal decisions are very sensitive to the magnitude of the A.I. risk. With $\delta = 1\%$ and log utility it is optimal to use the A.I. technology for 40 years involving an overall 1/3 probability of existential risk and a stunning 55-fold increase in consumption. With $\delta = 2\%$, it is optimal to shut it down immediately.

Key Point 2 (Log utility vs CRRA > 1): With $\delta = 1\%$, the optimal decision varies sharply with γ . With $\gamma = 2$, the gain in consumption falls by 100x to 57 percent instead of 55x, the A.I. is used for 4.5 years, and the probability of an existential disaster is just 4 percent.

Decisions are very sensitive to the setup, especially $\gamma = 1$ vs $\gamma \ge 2$

Richer Model: Improved mortality and singularities

Singularities and Improved Mortality

- · Richer model with dynamics and two additional considerations
 - A.I. could lead to a singularity: infinite consumption in finite timeMortality improvements
- If A.I. can generate new ideas sufficient to raise economic growth to 10%, it may also innovate to cure cancer and heart disease and raise life expectancy.
 - Insight: mortality and existential risk are in the same units
 - Not filtered through $u(\cdot)$

The Economic Environment

• N identical people with lifetime utility

$$U = \int_0^\infty e^{-(\rho+m)t} u(c_t) dt$$

- \circ *m* = exogenous mortality rate
- $c_t = c_0 e^{gt}$: exogenous growth in consumption
- $\circ~$ CRRA utility with $\gamma>1$ here
- Should we use the A.I. or not?
 - Shut it down: Growth g_0 and mortality rate m_0
 - Use A.I.: Growth g_{ai} and mortality rate m_{ai} , but one-time existential risk δ

Solution

• Lifetime utility

$$U(g,m) = \frac{\bar{u}}{\rho+m} + \frac{c_0^{1-\gamma}}{1-\gamma} \cdot \frac{1}{\rho+m+(\gamma-1)g}$$

• Use the A.I. as long as

 $NU(g_0, m_0) < (1 - \delta)NU(g_{ai}, m_{ai})$

implies an existential risk cutoff

$$\delta^* = 1 - \frac{U(g_0, m_0)}{U(g_{ai}, m_{ai})}$$

 $\delta > \delta^* \Rightarrow$ Shut down the A.I.

 $\delta < \delta^* \Rightarrow$ Use the A.I.

Singularity

- What if A.I. results in a Singularity = infinite consumption immediately?
- Key: If $\gamma > 1$, infinite consumption forever delivers finite utility (bounded)

$$I_{sing} = rac{ar{u}}{
ho + m_{ai}}$$

• If $m_{ai} = m_0 \equiv m$, then the cutoff is

$$\delta^*_{sing} = rac{1}{1+(\gamma-1)v(c_0)} \cdot rac{1}{1+rac{(\gamma-1)g_0}{
ho+m}}$$

- Comparative statics:
 - δ_{sing}^* falls if $v(c_0), g_0$, or γ is higher
 - $\circ~\delta^*_{sing}$ rises if $\rho+m$ is higher (less time for g_0 to kick in)

Existential Risk Cutoffs: δ^* (no mortality advantage $m_{ai} = m_0$)

γ	$g_{ai}=10\%$	Singularity	
1.01	0.350	0.934	
2	0.049	0.071	
3	0.019	0.026	

• Log utility:

- High cutoffs confirm Simple Model
- $\circ \ \ \text{Singularity} \Rightarrow \delta^* = 1 \ \text{for} \ \gamma \leq 1$

Existential Risk Cutoffs: δ^* (no mortality advantage $m_{ai} = m_0$)

γ	$g_{ai}=10\%$	Singularity
1.01	0.350	0.934
2	0.049	0.071
3	0.019	0.026

• Log utility:

- High cutoffs confirm Simple Model
- $\circ \ \ \text{Singularity} \Rightarrow \delta^* = 1 \ \text{for} \ \gamma \leq 1$
- CRRA $\gamma \ge 2$:
 - Low cutoffs confirm Simple Model
 - \circ Singularity similar to $g_{ai} = 10\%$ because flow utility is bounded

Existential Risk Cutoffs with Improved Mortality: δ^*

γ	$m_{ai}=m_0=1\%$	$m_{ai} = m_0/2 = 0.5\%$
1.01	0.350	0.572
2	0.049	0.290
3	0.019	0.265

- What if A.I. cuts mortality in half (doubles life expectancy from 100 to 200 years)?
- Answer: Large increase in the existential risk cutoff!
 - Trading off "lives vs lives" instead of "lives vs consumption"
 - Does not run into the sharp diminishing MU of consumption

- Key Point 3 (Singularities): How much existential risk society is willing to bear depends critically on whether or not flow utility is bounded. If $\gamma \leq 1$, the existential risk cutoff for an immediate singularity that delivers infinite consumption is $\delta^* = 1$: any risk other than sure annihilation is acceptable to achieve infinite consumption. In contrast, if $\gamma \geq 2$, the singularity cutoffs are much closer to the cutoffs with $g_{ai} = 10\%$ and are much smaller.
- Key Point 4 (Mortality improvements): With $\gamma > 1$, consumption gains have sharply diminishing returns and life becomes increasingly valuable. If A.I. also improved life expectancy, the existential risk cutoffs are much higher, on the order of 25–30% for $\gamma = 2$.

Conclusion: Key Points

- Whether $\gamma = 1$ or $\gamma \ge 2$ matters a lot (bounded utility)
 - With $\gamma \ge 2$, results are often very conservative wrt using A.I.
- Singularities are not so special with bounded utility
- If A.I. improves life expectancy, you are trading off "lives vs lives" and sharply declining MU of consumption is less important ⇒ higher cutoffs